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A Fast Algorithm for Joint Reconstruction of Ancestral Amino
Acid Sequences
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A dynamic programming algorithm is developed for maximum-likelihood reconstruction of the set of all ancestral
amino acid sequences in a phylogenetic tree. To date, exhaustive algorithms that find the most likely set of ancestral
states (joint reconstruction) have running times that scale exponentially with the number of sequences and are thus
limited to very few taxa. The time requirement of our new algorithm scales linearly with the number of sequences
and is therefore applicable to practically any number of taxa. A detailed description of the new algorithm and an
example of its application to cytochromeb sequences are provided.

Introduction

By using extant sequences and the phylogenetic re-
lationships among them, it is possible to infer the most
plausible ancestral sequences from which they have
been derived. Ancestral reconstruction has been applied
in several contexts. For instance, the parsimony method
(Fitch 1971; Swofford 1993) has been used to infer an-
cestral amino acid sequences of lysozyme. The inferred
ancestral proteins were then synthesized in vitro and
used in studies of adaptive evolution (Malcolm et al.
1990; Stewart 1995). The parsimony method, however,
has many faults. For instance, it is inherently biased to-
ward overestimating the number of ‘‘common to rare’’
changes (Walker 1998). Furthermore, this method does
not supply the means for discriminating among equally
parsimonious reconstructions (Yang, Kumar, and Nei
1995).

Maximum likelihood (ML) is a general estimation
paradigm which has been widely utilized in evolutionary
studies, overcoming many shortcomings of parsimony
(Felsenstein 1981; Kishino, Miyata, and Hasegawa
1990). ML-based methods for inference of ancestral se-
quences were devised by Yang, Kumar, and Nei (1995)
and Koshi and Goldstein (1996). A widely used variant
of ML (the Bayesian approach) finds the most probable
parameter set given the data. Applying this ML variant
to ancestral-sequence reconstruction, one maximizes
P(ancient amino acid sequences� contemporary sequenc-
es). Indeed, the method developed by Yang, Kumar, and
Nei (1995) is Bayesian. By using the most likely set of
sequences at all the internal nodes to evaluate the num-
ber of synonymous versus nonsynonymous substitutions
along branches, Zhang, Rosenberg, and Nei (1998) in-
ferred positive Darwinian selection after gene duplica-
tion in primate ribonuclease genes.

Yang (1995) distinguished between two variants of
ancestral ML reconstruction, termed ‘‘joint’’ and ‘‘mar-
ginal.’’ To illustrate the difference between the two

Key words: ancestral sequences, fast algorithm, joint reconstruc-
tion, maximum likelihood, dynamic programming, molecular
evolution.

Address for correspondence and reprints: Dan Graur, Department
of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv Uni-
versity, Ramat Aviv 69978, Israel. E-mail: graur@post.tau.ac.il.

methods, let us consider the multifurcated tree in figure
1. Suppose character stateA can change to eitherB or
C, and then toD . . . I, according to the probabilities
listed in figure 1. If we are interested in the most likely
pathway, then clearly the answer is set{A, C, I}, i.e., A
→ C → I, which has a probability of 0.45� 0.9 �
0.405. If, on the other hand, we are interested in the
most likely character state after one step, thenB is the
winner (althoughB does not even feature in the most
likely set). As far as ancestral-sequence inference is con-
cerned, we have an analogous situation. We may be in-
terested either in a the set of all the hypothetical taxo-
nomic unit (HTU) sequences (joint reconstruction) or in
a specific HTU whose sequence we would like to esti-
mate (marginal reconstruction). As our examples dem-
onstrate, the results are not necessarily the same under
the two methods of ML reconstruction.

The two ML reconstruction methods have been im-
plemented in the phylogenetic software packages PAML
(Yang 1995) and ANCESTOR (Zhang and Nei 1997).
However, joint reconstruction is very inefficiently im-
plemented in these applications, which employ inher-
ently slow algorithms. These algorithms evaluate many
possible reconstructions one by one, and there arecn

such reconstructions per site, wherec is the number of
character states observed in the site andn is the number
of reconstructed ancestors. Thus, the running time of
existing reconstruction programs is exponential, i.e.,
such programs are inapplicable when the number of taxa
is large.

Koshi and Goldstein (1996) have developed a fast
dynamic programming algorithm for marginal recon-
struction, whose variants are implemented in existing
software (Yang 1995; Zhang and Nei 1997). To date, no
fast algorithm exists for joint reconstruction.

Here, we provide a new efficient algorithm for joint
ML ancestral reconstruction. The running time of our
algorithm scales linearly with the number of sequences
and thus can be applied to a practically unlimited num-
ber of sequences. The new algorithm is based on the
dynamic programming scheme (for a general description
of this scheme, see, e.g., Cormen, Leiserson, and Rivest
1990). Finally, we compare the performance of our
method to those of extant algorithms by applying it to
a data set of cytochromeb sequences.
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FIG. 1.—A numerical illustration of the difference between the
joint maximum-likelihood and the marginal maximum-likelihood
methods. The probability of change from any character state to any
other is shown on the arrows. The most likely joint route is A → C
→ I, with a probability of 0.45 � 0.9 � 0.405. On the other hand, the
most likely first step is A → B, with a probability of 0.55 as compared
with a probability of only 0.45 for A → C, which is part of the most
likely joint pathway.

FIG. 2.—a, Unrooted phylogenetic tree for five taxa. Letters de-
note amino acids: A, alanine; V, valine. The digit to the left of each
node is an arbitrary node label. tx is the branch connecting node x and
its father. (We use the symbol tx to represent both the branch and its
length.) The subtree supported by the branch t6 appears in a shaded
rectangle. b, Under the assumption that the character state at node 7
is A, there are two possible reconstructions for node 6. If we assign A
to node 6, then the likelihood of the shaded subtree is 0.7 � 0.7 �
0.3 � 0.147. (Replacement probabilities along the branches are taken
from table 1.) On the other hand, if V is assigned to node 6, then the
likelihood of the shaded subtree is 0.3 � 0.55 � 0.45 � 0.074. Hence,
given that node 7 is assigned A, the best reconstruction for node 6 is
A. Thus, L6(A) � 0.147 and C6(A) � A, where L and C denote like-
lihood and most likely character state, respectively. c, A similar com-
putation of L6(V) and C6(V).

Materials and Methods
ML Ancestral Reconstruction

Following Yang, Kumar, and Nei (1995), we as-
sumed that different sites evolve independently. We
therefore restricted the subsequent description to a single
site. We further assumed that sequence evolution is gov-
erned by a probabilistic reversible model. As far as ami-
no acid sequences are concerned, this model is described
by a 20 � 20 matrix M, indicating the relative replace-
ment rates of amino acids, and a vector (PA, . . . , PY)
of amino acid frequencies. For each branch of length t,
the i → j replacement probability, denoted as Pij(t), can
be calculated from the eigenvalue decomposition of M
(Kishino, Miyata, and Hasegawa 1990). The unrooted
tree topology and branch lengths are assumed to be
known a priori.

Consider, for example, an unrooted tree with five
operational taxonomic units (OTUs), as in figure 2. At
a given sequence position, there are 203 possible recon-
structions of the amino acids at the three internal nodes
(A in node 6, A in node 7, A in node 8; or A in node 6,
A in node 7, C in node 8; . . . or Y in node 6, Y in node
7, Y in node 8). The aim of joint ML is to identify the
triplet �, maximizing P(� � data). That is, we want to
find, from among all possible triplets, the one that max-
imizes

P(data � �) � P(�)
. (1)

P(data)

Since P(data) is the same for all triplets, it suffices
to maximize P(data � �) � P(�). For the tree in figure 2,
we solve

max [P P (t )P (t )P (t )P (t )P (t )y y y 1 y y 2 y y 7 y y 3 y y 68 8 1 8 2 8 7 7 3 7 6
(y ,y ,y )6 7 8

� P (t )P (t )]. (2)y y 4 y y 56 4 6 5

The choice of node 8 as the root is arbitrary, be-
cause the model assumed is time-reversible (Felsenstein
1981; Yang, Kumar, and Nei 1995).

Complexity

The complexity issue is central to ancestral recon-
struction. The solution sought in equation (2) is the max-
imum over all possible triplets. However, for larger
trees, say, with h HTUs, one needs to maximize over
the set of all possible combinations of h ancestral char-
acter states. As explained in the introduction, this set is
very large, including 20h such combinations. Even if one
considers only the c character states observed in the site,
there are ch combinations of such states that are likely
to appear (Zhang and Nei 1997). Naive implementation,
examining each such combination separately, is imprac-
tical for all but very modest values of h.

In the following, we present a fast new algorithm
for ancestral reconstruction. This dynamic programming
algorithm guarantees finding the set of sequences, one
sequence per node, most likely to have been the pro-
genitors of the extant sequences. The complexity of the
algorithm is linear. That is, its running time per site is
proportional to the number of internal nodes, and its
efficiency enables its employment for any number of
OTUs. Note that our algorithm maximizes the likelihood
over all 20h possible combinations. For very small num-
bers of OTUs, this implies longer running times than
those for existing programs, which check only ch com-
binations. However, since our algorithm is efficient, it
does not require more than a few seconds (see Results).



892 Pupko et al.

Table 1
Replacement Probabilities for the Toy Model (See Text)

To Alanine To Valine

From alanine . . . . . . . .
From valine . . . . . . . . .

0.70
0.45

0.30
0.55

NOTE.—We assume that there are only two possible character states: alanine
and valine. We also assume that the frequencies of alanine and valine are 0.6
and 0.4, respectively.

Terminology

We root the tree at an arbitrary internal node. If
node x is the direct descendant of node y, we say that y
is the father of node x, and x is the son of node y. Thus,
each nonroot node has a father. Each internal node has
two sons, except for the root, which has three sons.
OTUs have no sons. Also, each tree branch supports a
subtree, which includes the father and son that it con-
nects, together with all of the descendants of the son.
For a demonstration of the terminology, consider the
tree in figure 2. Node 8 is the arbitrary root. Node 7 is
the father of nodes 3 and 6. The branch connecting
nodes 7 and 6 supports the subtree in the shaded region,
including nodes 7, 6, 5, and 4.

A Linear-Time Algorithm for Joint Ancestral
Reconstruction

Only alanine (A) and valine (V) are observed at
OTUs of the tree in figure 2. Thus, the chances of any
other amino acid occurring at internal nodes are quite
negligible. For the sake of clarity and compactness, in
this section we shall only deal with the values of Pij(t)
for i and j which are either alanine or valine. For sim-
plicity, we further assume that all the branches of the
phylogenetic tree in figure 2 are of the same length t
and that the replacement probabilities Pij(t) for this value
of t are given in table 1. Note, however, that this table
is merely a toy model for the sole purpose of demon-
strating the algorithm. In practice, we use Pij(t) values
from matrices published in standard literature (Dayhoff,
Schwartz, and Orcutt 1978; Jones, Taylor, and Thornton
1992; Adachi 1995) and use trees whose branch lengths
have been estimated.

Like many phylogenetic algorithms, our algorithm
first traverses the tree from the OTUs toward the root.
Upon visiting a nonroot node x, we compute for each
character state i a quantity Lx(i) and a character state
Cx(i). Lx(i) and Cx(i) are to be interpreted as follows: If
the father of node x is assigned character state i, then
finding the best reconstruction of the subtree supported
by the branch between x and its father is a separate
problem from reconstructing the rest of the tree. Lx(i) is
the likelihood of the best reconstruction of this subtree
on the condition that the father of node x is assigned
character state i. Cx(i) is the character state assigned to
node x in this optimal conditional reconstruction.

These concepts are best understood with an ex-
ample. Consider node x � 6 in the tree in figure 2. If
one assumes its father, i.e., node 7, is assigned A, then
the best reconstruction of the shaded subtree is given in

figure 2b. In this case, L6(A) � 0.7 � 0.7 � 0.3 � 0.147,
and C6(A) � A. By a similar argument, L6(V) � 0.55 �
0.55 � 0.45 � 0.136, and C6(V) � V, as demonstrated
in the legend of figure 2.

We now give a full description of the algorithm.

1. For each OTU y perform the following:
1a. Let j be the amino acid at y. Set, for each

amino acid i: Cy(i) � j. This implies that no
matter what is the amino acid in the father
of y, j is assigned to node y.

1b. Set for each amino acid i: Ly(i) � Pij(ty),
where ty is the branch length between y and
its father.

2. Visit a nonroot internal node, z, which has not
been visited yet, but both of whose sons, nodes
x and y, have already been visited, i.e., Lx(j),
Cx(j), Ly(j), and Cy(j) have already been defined
for each j. Let tz be the length of the branch
connecting node z and its father. For each amino
acid i, compute Lz(i) and Cz(i) according to the
following formulae:
2a. Lz(i) � maxj Pij(tz) � Lx( j) � Ly( j).
2b. Cz(i) � the value of j attaining the above

maximum.
3. If all nonroot nodes have been visited, proceed

to step 4. Otherwise, return to step 2.
4. Denote the three sons of the root by x, y, and z.

For each amino acid k, compute the expression
Pk � Lx(k) � Ly(k) � Lz(k). Reconstruct r by
choosing the amino acid k maximizing this ex-
pression. The maximum value found is the like-
lihood of the best reconstruction.

5. Traverse the tree from the root in the direction
of the OTUs, assigning to each node its most
likely ancestral character as follows:
5a. Visit an unreconstructed internal node x

whose father y has already been reconstruct-
ed. Denote by i the reconstructed amino acid
at node y.

5b. Reconstruct node x by choosing Cx(i).
5c. Return to step 5a until all internal nodes

have already been reconstructed.

To elucidate the algorithm, we now present an ex-
ample of its application to the tree in figure 2. The com-
putation of L6 and C6 has been presented above. The
values of Lx and Cx, computed in steps 1 and 2 for all
nonroot nodes x, appear in figure 3a. The expressions
used to infer the amino acid at the root (step 4) are
shaded in figure 3a. As can be seen, the most likely
reconstruction assigns valine to the root. The most likely
reconstruction of the whole tree appears in figure 3b.

Computer Program

A computer program that implements the algorithm
presented above, called FastML, was written in C��
for PC architecture. It is available at http://kimura.tau.
ac.il/�tal. The program allows the user to obtain both
joint and marginal reconstructions of amino acid se-
quences at all the internal nodes of a given phylogenetic
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FIG. 3.—a, The bottom-up traversal of the algorithm (see Materials and Methods) is presented in dashed rectangles (step 1), solid rectangles
(steps 2 and 3) and a shaded rectangle (step 4). b, The reconstructed ancestral character states (steps 4 and 5). After assigning V to the root,
we assign the character states to all hypothetical taxonomic units. Since V is assigned to node 8 and C7(V) � A, we assign A to node 7. Since
A is assigned to node 7 and C6(A) � A, we assign A to node 6.

tree. It also calculates the likelihoods of the reconstruct-
ed sequences and the posterior probability at each se-
quence position.

Empirical Example

Aligned cytochrome b amino acid sequences from
a sample of mammals were taken from the data of Tak-
ezaki and Gojobori (1999). Phylogenetic trees with 4 to
24 sequences (from 21 taxa) were prepared by taking a
subset from these sequences and using the neighbor-
joining algorithm (Saitou and Nei 1987) to reconstruct
the tree. For each such tree, we compared the running
time required to estimate the ancestral sequences by the
three programs: FastML, PAML, and ANCESTOR.

We also compared joint versus marginal recon-
struction for cytochrome b sequences of the 21 taxa in
the data set. The phylogenetic tree obtained for these
sequences (fig. 5) was in agreement with the tree ob-
tained by Takezaki and Gojobori (1999). Calculations of
the replacement probabilities were done with the REV
model (Adachi 1995).

Results
Complexity

The program ANCESTOR was unable to recon-
struct the best joint ancestral sequences for more than
nine amino acid sequences. In PAML, exact search for
joint reconstruction is limited to six amino acid sequenc-
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FIG. 4.—Comparison of the running time of FastML, a program implementing the new algorithm (triangles), versus that of the ANCESTOR
program (squares). We were unable to find the exact reconstruction for 10 OTUs with the ANCESTOR program on our Pentium 450-MHz
computer. PAML was not included in this chart, since for n � 6 sequences, it automatically employs a heuristic algorithm that does not
necessarily produce the most likely set of ancestral sequences.

Table 2
Difference Between Joint Maximum-Likelihood (ML)
Reconstruction and Marginal ML Reconstruction

Node Position
Joint

Reconstruction
Marginal

Reconstruction

23 . . . . . .
24 . . . . . .
25 . . . . . .
26 . . . . . .
27 . . . . . .
28 . . . . . .
29 . . . . . .
32 . . . . . .
33 . . . . . .
35 . . . . . .
36 . . . . . .
37 . . . . . .
38 . . . . . .

209
209
263
263
263
263
263
238
241

23
23
23
23

T
T
S
S
S
S
S
I

M
A
A
A
A

S
S
N
N
N
N
N
V
L
T
T
T
T

NOTE.—The numbers in the first column refer to the internal-node labels in
figure 5. Amino acids are shown as one-letter abbreviations. For all other nodes
and positions, the two methods yield the same ancestral amino acid reconstruc-
tion.

es. For a larger number of taxa, both the ANCESTOR
and PAML programs resort to heuristic approaches,
which are not guaranteed to find the optimal reconstruc-
tion. The running time of our program (FastML) versus
the running time of ANCESTOR for the exact search is
given in figure 4.

Joint Versus Marginal Reconstruction

Results of joint and marginal ML reconstruction of
the 19 internal nodes for the tree in figure 5 are available
at http://kimura.tau.ac.il/�tal. Differences between joint
reconstruction and marginal reconstruction at each of the
nodes are given in table 2. Thirteen differences were
found at five positions, each in different HTUs. One
such example, involving the inference of sequence po-
sition 241, is shown in figure 5.

Discussion

Previous joint reconstruction algorithms are of ex-
ponential time complexity, which severely limits their
applicability to only a small number of sequences. Our
algorithm overcomes this problem, reducing the com-
plexity of the exhaustive search to linear time. Thus, the
algorithm guarantees the identification of the most prob-
able amino acid ancestral pathway of amino acid re-
placements even when the number of taxa is very large.
Linear time algorithms are implemented in PAML and
ANCESTOR only for marginal reconstruction. Never-
theless, marginal reconstruction optimizes a different
criterion and can only be considered an approximation
to joint reconstruction, as demonstrated in our results.

As shown in table 2, in all but five positions, there
was no difference between joint and marginal recon-
struction. However, depending on the intention of the
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FIG. 5.—Marginal versus joint reconstruction at position 241. Marginal reconstruction of the ancestor of all Cetartiodactyla (node 33)
predicts leucine. In contrast, when reconstructing the most likely set of ancestral amino acids in this position, methionine is assigned to this
hypothetical taxonomic unit (arrow).

study, the differences may be important. For example,
consider node 33 (fig. 5). If one seeks the most likely
amino acid in this HTU, then it is leucine. However,
when jointly reconstructing the whole tree, the most
likely member of the set containing all the internal-node
amino acid assignments is methionine. Deciding which
is ‘‘ more correct’’ depends on the question asked. For
instance, if one wishes to count the number of threonine-
to-methionine replacements over the entire tree, then the
joint reconstruction should be used to obtain this number
(2, in our case, on the branch connecting node 24 to
node 3 and the branch connecting node 32 to node 33).
However, if one wishes to synthesize the hypothetical
cytochrome b sequence of the ancestor of Cetartiodac-
tyla, then one should use the marginal reconstruction
approach. We emphasize that both methods compute op-
timal reconstructions by using all of the available data.
Discrepancies originate not from misuse of information,
but from the difference in the nature of the probabilistic
questions asked.

The rate of amino acid replacement is usually not
constant among sites. Our algorithm finds the most like-
ly ancestral sequence only for the case of constant rate
only. There are as yet no programs for joint reconstruc-

tion that take rate variation among sites into account. In
PAML, a marginal reconstruction of ancestral sequence
that assumes gamma distribution among sites is avail-
able. We were unable to apply our linear algorithm to
the gamma model because of the different expressions
that have to be maximized.

The algorithm described above is presented in
terms of amino acids and bifurcating trees. However, the
algorithm can be easily adapted for nucleotide sequenc-
es and multifurcating trees.
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