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Abstract

In this work we present two new approaches for constructing phylogenetic
trees. The input is a list of weighted quartets over n taxa. Each quartet
is a subtree on four taxa, and its weight represents a confidence level for
the specific topology. The goal is to construct a binary tree with n leaves
such that the total weight of the satisfied quartets is maximized (an NP
hard problem).

The first approach we present is based on geometric ideas. Using
semidefinite programming, we embed the n points on the n-dimensional
unit sphere, while maximizing an objective function. This function de-
pends on Euclidean distances between the four points, and reflects the
quartet topology. Given the embedding, we construct a binary tree by
performing geometric clustering. This process is similar to the traditional
neighbor joining, with the difference that the update phase retains geo-
metric meaning: When two neighbors are joined together, their common
ancestor is taken to be the center of mass of the original points.

The geometric algorithm runs in poly(n) time, but there are no guar-
antees on the quality of its output. In contrast, our second algorithm is
based on dynamic programming, and it is guaranteed to find the optimal
tree (with respect to the given quartets). Tts running time is a modest
exponential, so it can be implemented for modest values of n.

We have implemented both algorithms, and ran them on real data
for n = 15 taxa (14 mammalian orders and an outgroup taxon). The
two resulting trees improve previously published trees and seem to be of
biological relevance. On this dataset, the geometric algorithm produced a
tree whose score is 98.2% of the optimal value on this input set (72.1% vs.
73.4%). This gives rise to the hope that the geometric approach will prove
viable even for larger cases where the exponential, dynamic programming
approach is no longer feasible.
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1 Introduction

Molecular data are the basis for current phylogenetic analysis of evolution.
Since molecular data are not available evenly for all taxa of interest, molecular
phylogeneticists must frequently decide on a trade off between the number of
taxa and the amount of molecular data used in a study. If we restrict ourselves
only to sequences that are common to all the taxa under study, we may end
up ignoring the vast majority of data. If; on the other hand, we increase
the amount of molecular data used in a study, we end up seriously restricting
taxonomic sampling (i.e. study fewer taxa). An approach that tries to utilize
all available data while avoiding the problem of taxonomic sampling is the four
tazon approach suggested in [Gra93] and used in [GDG96, GDG96]. In this
method, each 4-taxon tree (quartet) is accompanied by a measure of reliability
or confidence (e.g., bootstrap value, likelihood) associated with the internal
branch of the 4-taxon tree. This confidence value reflects two factors: how solid
is the plurality of sequences supporting the conclusion (i.e., the strength of the
phylogenetic signal), and what is the size of the sequence population used to
build the tree. For each group of 4 taxa, there are three possible unrooted
phylogenetic trees. In this type of studies, only the most supported topology is
chosen.

Combinatorially, the justification for the quartet based approach is that if
all (Z) quartets are given with the right topology, then the underlying tree is
uniquely determined, and can be efliciently constructed. Of course, in reality
there are errors, so a tree consistent with all given quartets may not exist!. So
the goal is to construct a binary tree with n leaves such that the total weight of
the satisfied quartets is maximized (an NP hard problem). Our contribution in
this paper is in suggesting new algorithmic approaches to solve this optimization
problem.

Our first algorithm has the following geometric intuition: We embed the
n taxa as n points in R", while trying to preserve distance relations that are
implied by the input of four-taxon trees. To find such embedding?, we em-
ploy semidefinite programming. Specifically, the points are embedded on the
n-dimensional unit sphere. To construct a tree from the embedding, we employ
an iterative technique that we call geometric clustering. The major difference
between this technique and “traditional” neighbor joining [SN87] is in the phase
where the metric is updated. At each iteration, we join the pair of points with
minimum Fuclidean distance, and take their center of mass as the common
ancestor. We have implemented this algorithm on input of 15 taxa (14 mam-
malian orders and an outgroup taxon) that was derived from the HOVERGEN
database [DMG94]. The resulting tree satisfies 72.1% of the weighted quartets.
This is an improvement over all previously published trees (see Figure 1).

Even for a modest size like n = 15, the number of trees is too large to enable
an exhaustive search for the best one. We have developed an exponential time,

'Indeed, determining if a given set of quartets is satisfiable is an NP complete problem
[Ste92].
2A related notion of low distortion Euclidean embeddings for weighted trees has been

studied in [Bou85, LMS98].



dynamic-programming algorithm, which finds an optimal tree. Its running time
is O(k-3"), where k is the number of quartets in the input, & < (). This is
a fairly modest exponential growth, and it enabled us to implement and run
the algorithm on the same 15 taxa input set. The optimal tree satisfies 73.4%
of the weighted quartets. It is interesting that the geometric algorithm, which
is essentially a heuristic with no performance guarantees, came so close to the
optimal result.

The remainder of this paper is organized as following: In Section 2 we survey
some of the past research done in the area of phylogenetic reconstruction. In
Section 3 we specify the problem, and also describe how the actual input was
obtained. Section 4 explains the geometric algorithm, while Section 5 explains
the dynamic programming algorithm. Section 6 describes the computational
results, depicts the two output trees, and compares them to previous trees.
Finally, Section 7 contains some concluding remarks.

2 Prior Work

Phylogeny reconstruction is an old problem; it has been investigated for over 150
years. Consequently, the related literature is vast. The algorithmic challenges
that follow the fast developments in the bimolecular field have recently drawn
the attention of computer scientists as well. In this chapter we merely quote the
major computer-theoretic research issues related to phylogeny reconstruction,
and give selected references.

In general, phylogeny methods are divided into character-based and distance-
based methods. We will consider each in turn. An orthogonal classification
identifies the quartet method as one possible algorithmic approach. Being in
the general framework of this work, the existing quartet methods will also be
listed. We also browse through the different techniques to evaluate the quality
of a phylogeny. Another important aspect of this work is the usage of the
semidefinite programming tool. We bring some related pointers in this regard
as well.

2.1 Character-Based methods

A character-based method considers qualitative characters of the input taxa.
Any such character is a partition of the input set according to the value each
taxon takes. FEach equivalence class defined thus is called a character state.
For example, a DNA sequence is composed of the nucleotides A, C, T and
G. Sequences of different species are aligned in a multiple sequence alignment
process which inserts gaps into the sequences so as to maximize the resemblance
of the sequences to each other when laid out side by side. Thus, each position
of the aligned sequence (called site) is a character with five states (A, C, T,
G, or the gap symbol -). Input for such a method will typically be a |S] x |C]
matrix, where 5 is the taxa set and (' is the character set. Fach entry denotes
a state which a particular taxon exhibits for a given character.

Given sequences for each taxon, a natural approach is to build a tree with
the internal nodes, as well as the external ones, labeled by the sequences; the



labels at the leaves are given as input, and the internal labels are computed. The
optimization criterion is the sum of Hamming distances between neighboring
sequences. Methods that try to minimize it are called maximum parsimony
methods. The general maximum parsimony problem is NP-hard [Day83, FG&2,
Gus84], but finding the internal labeling for a given topology can be done
efficiently [Fit78, Har73]. This leads to algorithms which scan many different
topologies and output the most parsimonious one.

Another approach tries to construct a tree such that for each character, the
node-sets that correspond to any character state form a connected sub-graph.
Maximizing the number of characters for which this is true is called the maxi-
mum compatibility problem. This problem, too, is NP-hard [DS86, PW96, War].
The point of intersection between maximum parsimony and maximum compat-
ibility is called the perfect phylogeny problem. It decides whether all of the
characters are compatible. Perfect phylogeny was shown to be NP-hard by
equivalence to the triangulating colored graphs problem [BFW92, Ste92]. Al-
though hard in the general case, polynomial-time algorithms for perfect phy-
logeny exist in cases where some of the input parameters (e.g., the number of
states) are fixed [War].

2.2 Distance-Based methods

A distance based phylogeny method would typically take as input a symmetric
zero-diagonal |S| x |S] matrix. Here, too, the goal is to produce a phylogeny
whose induced metric represents the input data in the best way possible. If the
input distance matrix M is realizable by a tree and its induced path lengths,
then M is said to be additive. The special case where all leaves have the same
distance from the root is called an ultrametric. Ultrametric trees correspond
to the biological theory that substitutional events in different species occur at
the same rate (this is the “molecular clock” assumption, nowadays popularly
discredited).

Given an additive metric, constructing the tree is easy [WSSB77]. The
problem is that real-life input is erroneous. Some of the errors are inherent in
the assumed model of evolution. Therefore, we seek phylogenies with induced
metric which approximates the “best possible” tree metric under some criterion.
Again, most of the problems in this domain are NP-hard.

One popular heuristic approach is agglomerative clustering. Here, at each
iteration two nodes are joined into one father node. Examples include the pop-
ular Neighbor Joining method [FM67], the Fitch-Margoliash method [FM67],
and BIONJ [Gas97].

As it turns out, approximating ultrametrics under the L, criterion is doable
in polynomial time [GR69, SS63, FKW95, War]. Consequently, there are algo-
rithms that use an approximated ultrametric to produce an approximation of
the additive metric [ABF+96, CF'97].



Figure 1: The three possible quartets for the species set {a,b, ¢, d}

2.3 Quartet Methods

The fact that small phylogenies are easier to infer than large ones leads to
another approach. The key idea is to consider small subsets of taxa, one at
a time, and infer the phylogenies for these subsets. All methods use subsets
of size four. The next stage combines the multiple topologies (called quar-
tets) into a single phylogeny. Given a complete set of correct quartets, the
true tree can be constructed in polynomial time. However, doing so when
the individual topologies may contain errors is NP-hard [Ste92]. Published
quartet methods include the so-called “naive” method, [War, p. 25], the Bune-
man tree [Bun71, BG98], split decomposition [War], the short quartet method
[ESSWIT], neighbor-joining variants [Gra96, GDG96, GGD97], and quartet
puzzling [SHI6]. See also [BD86, Fit81]. In general, these heuristics deal with
unweighted quartets (i.e., each quartet has the same significance). Some also
require as input the full set of (Z) quartets. In principle, the quartet puzzling
algorithm can be extended to the unweighted general case, but no experiments
in this direction have been done.

3 Problem Description

3.1 Specifications

The problem is defined over a set of n taxa, numbered 1,...,n. A quartet is
a quadruple of taxa, with an associated topology — a partition of the four
taxa into two pairs of taxa (e.¢g. {a,b} and {c,d}). This subdivision expresses
the most likely topology induced by the underlying n taxa phylogeny. Such a
quartet is denoted ab|cd. Figure 1 shows the three possible quartets over a given
set of 4 species. The input to the problem consists of a set of k such quartets.
We denote the associated taxa for the j-th quartet by a;b;|c;d;. No two quartets
share the same set of four taxa. Each input quartet is accompanied by a positive
weight, denoted by C;, which represents the confidence in the quartet topology.

The output is an unrooted tree with n leaves which correspond to the input
taxa. Usually, one of the input taxa is an outgroup, namely an external taxon,
not belonging to the same family. Using the outgroup taxon, the tree can
be (uniquely) rooted such that the outgroup is an immediate descendent of
the root. Once the tree is rooted, the branching of its nodes is viewed as a



description of the evolution of the n taxa. If all internal nodes of a tree have
out-degree 2. the tree is called bifurcating. Otherwise, the tree is said to be
multifurcating.

Given a tree and a quadruple {a,b, ¢, d}, we can compute the quartet topol-
ogy induced by T, using the following procedure. First, all leaves but a,b, ¢
and d are deleted from the tree. Edges adjacent to these leaves are also re-
moved. Next, internal nodes with degree two are contracted and deleted, so
their two adjacent nodes become connected. This process is repeated until no
internal nodes of degree two are left. It is easy to see that there are four possible
induced topologies for the quadruple — three quartets and the star topology
(which can be induced only by a multifurcating tree). Given a specific quartet
and the induced four taxa subtree, we say that the quartet is unresolved if the
tree induces the star topology on the four taxa. Otherwise, the quartet is either
satisfied (if the topology induced by the tree equals the quartet’s topology), or
violated.

Given a tree T and a set of quarters (), we would like to know how well
does T represent (). To do this, we find the subset of quartets S C () that are
satisfied by T, and the subset of quartets U C ) that are unresolved by T. We
now define the score of the tree as follows:

1
Cs+ - Cy .
R

That is, we add the confidence weights of the satisfied quartets, plus one third
of the weights of the unresolved quartets. This latter term was chosen because
there are three possible pairings for every quadruple. Therefore this term equals
the expected increase to the tree score that will result from a random bifurcation
of the tree (performed at nodes with more than two descendents). In a variant
of our method this factor is zeroed, so unresolved quartets do not contribute to
the score. We remark that in the history of phylogeny many multifurcating trees
were published. However, modern algorithms, including ours, always produce
a bifurcating tree.

An upper bound on the score of any tree is > ., C,. This upper bound
can be achieved only if there exists a tree that satisfies all quartets. We usually
state the score of a tree as a fraction of the upper bound, although it is possible
that no tree of 100% score exists.

We are now ready to formulate the problem precisely. Given a set of quartets
() and associated confidence scores, find a tree 7" with maximum score®. This
problem is NP-hard even if all the confidence weights have values 0 or 1 [Ste92].
Exhaustive search methods seem infeasible even for modest values of n (say
n = 15), because the number of unrooted bifurcating trees [Fel78] with n leaves
is

(2n —5)!
20=3(n — 3)1 7

For n = 15 the number of such trees is just below 8 x 10! .

*One may consider a similar problem where for every 4-tuple of taxa, all three quartet
topologies are given in the input (with different weights). Small modifications of both the
geometric and the exact algorithm will solve this variant as well.



3.2 Actual Input

We briefly describe how the four-taxon trees, which constitute the actual in-
put to our algorithms, were obtained. The following 14 mammalian taxa were
used: CAR = Carnivora (carnivores), CET = Cetartiodactyla (even-hoofed
ungulates and cetaceans), CHI = Chiroptera (bats), EDE = Edentata (sloths
and armadillos), HYR = Hyracoidea (hyraxes), HYS = Hystricognathi (guinea
pigs and porcupines), INS = Insectivora (hedgehogs and shrews), LAG = Lago-
morpha (rabbits and hares), PER = Perissodactyla (horses), PRI = Primates
(humans, apes and monkeys), PRO = Proboscidea (elephants), SCA = Sca-
dentia (tree shrews), SCI = Sciurognathi (rats, mice and squirrels), and SIR =
Sirenia (sea cows and dugongs). As an outgroup (OUT) to the above eutherian
mammalian taxa we used chicken or marsupial.

These 15 taxa were subject to the following process: Protein sequences
have been collected from the HOVERGEN [DMG94] database. The sequences
were aligned using the CLUSTAL W program [THG94]. Genetic distances were
computed as in [Kim83]. Four-taxon phylogenetic trees were inferred by using
maximum parsimony [Fel89]. Reliability of the internal branch in each 4-taxon
tree was assessed by 1000 bootstrap replicates [Fel85]. This list of (145) = 1365
quartet topologies and associated weights was the input to our algorithms.

4 The Geometric Algorithm

Our geometric algorithm assigns each taxa a point in R™. This is done by
applying the semidefinite programming method, to be described shortly. The
embedding is built using “hints” from the input set. For example, if the quartet
abled is in the list, we try to place @ and b close to each other, but @ and d far
apart. Once the points are embedded in R™, a clustering heuristic converts the
embedding into a tree.

4.1 Semidefinite Programming

We briefly explain the paradigm of SDP — semidefinite programming (see
[GLS87] for a thorough explanation). We describe how SDP can be augmented
by the incomplete Cholesky decomposition method to find embeddings of points
in R™, subject to certain constraints.

Definition 1: For positive integers m and n, a semidefinite program is defined
over a collection of n* real variables {x;; 21 j=1- The input consists of a set of
mn? real numbers {agf) VT =1y @ vector of m real numbers {bMYIL, and a
vector of n* real numbers {c;;};2) ;_,. The objective is to find {z;;};2] ;_, s0 as
to

magimize S S et
subject to
n n k
VE e {l,...,m} Dimt 2j=1 agj)%'j < b,
and The matriz X = {x;;} is symmetric



and positive semidefinite.

A symmetric matrix X is positive semidefinite when there exists a real
matrix V such that V7 .V = X. Given a positive semidefinite matrix X, such
V' can be found in polynomial time using incomplete Cholesky decomposition.
The semidefinite program itself is solvable in time polynomial in the size of its
input [GLS87].

The matrix V' can be used to interpret the solution obtained by the semidef-
inite programming problem geometrically. Interpret the columns of the n x n
matrix V' as n vectors vy,...,v, in R". Now, the variables z;; of the matrix
X simply correspond to (v;,v;), the inner product of »; and v;. Thus a linear
constraint on the x;;’s is simply a linear constraint on the inner products of the
vectors v;’s. The objective function and the constraints are simply linear com-
binations of the inner products. Hence we can use SDP to solve any problem
of the form:

Find n vectors vy,...,v, € R"” so as to maximize the quantity
> €ij(vi, v;), subject to the constraints )7, . agf)<vi,vj> < b,

In what follows we will use the last interpretation of SDP to find an embedding
of n points which represent the n taxa.

4.2 Geometric embedding of taxa

We will generally denote the embedding of taxon i by the point v; in R". Given
a list of k quartets a;b;|c;d; and confidence values C; (j = 1,...,k), we solve
the following semidefinite program:

maximize:
Pici<r Cillay, b5) + (ej, d;))
=05 i< Ciay, ¢5) + (aj, dj) + by, ¢5) + (b, d;))

such that
(vi,v) = 1 (1<i<n)

This formulation embodies many local constraints, such as “taxa ¢ and b
should be close together”, or “taxa a and d should be far apart”, into a single
expression. This approach is similar to the one used in [GW95] to approximate
MAX CUT. Consider the quartet ab|cd with confidence level C'. Its maximum
contribution to the objective function occurs when a and b are placed at the
same point, while both ¢ and d are placed at the antipodean point on the unit
sphere. In this case (a,b) = (¢,d) = 1, while (a,¢) = (a,d) = (b,c) = (b,d) =
—1. The overall contribution of the quartet will be 4C" with this embedding.
The worst embedding places a and ¢ together, and b and d at the antipodean
point. This will contribute —4C" to the objective function. The semidefinite
program will therefore look for a global embedding which maximizes “good”
quartet placements and avoids “bad” ones.



We have experimented with this approach, and it turned out that small
variants of it are helpful in improving the final result (the produced tree). One
such variant is ignoring quartets with low confidence in the objective function.
Only quartets with confidence level above a certain threshold (90% for example)
are included. Omne possible explanation why this may prove helpful is that
low confidence quartets probably carry most of the inconsistencies, and their
inclusion may lower the value of the objective function. We have also discovered
that by imposing additional constraints we get (small) improvements in the
score of the tree. For example, we force the points to maintain some small

pairwise distance by adding the (%) constraints

(vi,v;) < 1—¢ (1<i<j<nm)

for some positive ¢ (say ¢ = 0.25). This “represses” the SDP’s tendency to find
embeddings where points are very close to each other. This tendency may seem
harmless, but it has a negative effect on the tree building method, which we
describe next.

4.3 Geometrical Clustering

Having solved the SDP problem, one seeks a tree that reflects the geometric
data. For instance, if two points reside in the same geometric vicinity, they
should have a common ancestor which is not too much high up the resulting
tree. To this end, we employ a simple neighbor joining clustering heuristic
(see [SN8T]). The program is initialized with n clusters, each containing a
single point. An invariant kept by the algorithm is that each cluster has a
point in R™ associated with it. This is the case at initialization, and remains
true as new clusters are formed. At each step of the algorithm the number of
clusters is decreased by one, by removing two clusters and adding one. This
defines a tree, as the newly-added node represents the father of the two deleted
nodes in the output tree. The selection of the clusters to be removed is done by
calculating the pairwise distances between clusters, and selecting the pair having
the shortest Euclidean distance. The point associated with the new cluster is
the center of mass of the points of the removed clusters (the “mass” of a point
being the number of taxa it represents). When the number of clusters reaches
one, the tree is completed. The resulting tree is rooted, but we disregard the
rooting, since the input is inherently unrooted. To root the tree we use external
information — the identity of the outgroup taxon. We root the tree by forcing
the outgroup to be an immediate descendent of the root. We remark that this
heuristic is a special case of the general neighbor joining approach. The main
difference is that since clusters are associated with points in Euclidean n space,
the center of mass of the nearest neighbor pair is a natural choice for the new
cluster. This choice again induces Euclidean distances between the new cluster
and the “old” ones.



5 The Dynamic Programming Algorithm

Since the underlying problem is NP-hard we can not hope to give a polynomial
time algorithm to solve it optimally. However, in this section we show how an
optimal phylogenetic tree can be found, using a dynamic programming algo-
rithm, with a modest exponential time. The method is applicable to instances
with modest size (say n < 21). In particular, we have used it to find the optimal
phylogenetic tree for the 15 taxa input set. We emphasize that even for 15 taxa,
it is not feasible to exhaustively check all quartets for every possible bifurcating
tree. (The number of unrooted trees for n = 15 is approximately &~ 8-10'%, the
number of quartets is approximately 1,300, so the number of steps would be
more than 10'°).

5.1 Definitions

The following discussion deals with rooted bifurcating trees. For a node v, its
left and right children will be denoted by v, and v,, respectively. Given a rooted
tree 1" and a node v in it we denote by 7'(v) the subtree of 7" rooted at v. We
denote by L(T') the set of leaves (i.e., taxa) of the tree T'. For a pair of nodes
u, v the least common ancestor of u and v, 1ca(u,v) is defined as an ancestor p
of both u and v such that no node in 7'(p) other than p is an ancestor of both
u and v (see Figure 2).

Definition 2 Given a quartet ¢ = ablcd and a tree T, the quartet least common
ancestor of q, qlca(q) is defined as a node p that is the lca of two or more
pairs of elements from {a,b,c,d}, and no node in T(p) except p is the lca of
two or more pairs of elements from {a,b,c,d}.

For the implementation of our algorithm and the proof of its correctness,
we will use an equivalent definition.

Definition 3 Given a quartet ¢ = ablcd and a tree T, the gqlca of q is a node
p such that

L |L(T(p)) N {a,b, e, d}| > 3.

2. For any child s of p, |L(T(s))N{a,b,c,d}| < 2.

qlca
K@\ KQ\
a b c d a b c d
(a) (b)

Figure 2: Two possible arrangements of a qlca for quartets over {a,b,c,d}
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Observation 1 FEvery quartet q has a unique glca(q).

Proof: Assume, towards a contradiction, that the quartet ¢ has two dis-
tinct qlca(:) in 7', p; and ps. By definition 2 the two points cannot have an
ancestor-descendant relationship. Therefore, the two must belong to two sep-
arate subtrees. Definition 3 then implies that each T'(p;) contains at least 3
different taxa from ¢, so ¢ must have at least 6 taxa — a contradiction. (]

Lemma 2 Given a tree T and a quartet q, the subtree rooted at qlca(q) deter-
mines whether ¢ is satisfied in the tree T.

Proof: Let g = abled and v = qlca(q). We look at v’s children v,, v, and the
subtrees rooted at them T'(v,), T(v,). At least one of these subtrees contains
exactly two taxa e, f from {a, b, c,d}. The quartet ¢ is satisfied by T iff the pair
{e, f} is either {a, b} or {c,d}. L

Corollary 3 Given a quartet g = abled and a tree T, let v = qlea(q). Then T
satisfies q if and only if at least one of the following holds:

1. {a,b} C L(T(s)).

2. {e,d} C L(T(s)).
Where s is either v’s left child (s = v,) or v’s right child (s = v, ).

We remark that the node in 7" where ¢’s satisfaction is determined can in fact
“be pushed” even further down, to every w which is on a path between an lca
v of two taxa from u and gqlca(q) above v. There could be either one such node
u, if we are in case (a) of Figure 2, or more nodes in case (b) of Figure 2. We
postpone the “recognition event” to qlca(q) because this choice facilitates the
use of dynamic programming.

5.2 The Algorithm

Let @ be a fixed set of input quartets. Let 7" be a rooted tree, and v a node in
T. We denote by SATq(T'(v)) the set of quartets ¢ € () such that ¢ is satisfied
by T, and qlca(q) is a node in T(v). Let TOPo(T(v)) C SATo(T(v)) be the
set of quartets in ¢ that have v as their qlca and are satisfied by T. The
following equality describes a partition of SATg(T") to three disjoint subsets

SAT(T(v)) = TOPG(T(v)) USAT o(T(v:)) USATQ(T(v,)) . (1)

(The equality follows from Lemma 2 and Observation 1.) For a set A C @ of

quartets, let sum(A4) = >_4ea €y denote the sum of their weights. The score of
the subtree T'(v) (with respect to @) is defined as

scoreq(T(v)) = sum(SATo(T(v))) .
By Equation (1)

scoreq(1'(v)) = sum(TOPo(T'(v))) + scoreq(T'(ve)) + scoreqg(T(v,)) . (2)

11



Let S be a set of three or more taxa. Denote by opt_score,(5) the maximum
score with respect to () among all trees that have S as their set of leaves ?.
We denote by opt_tree, () a tree which attains the maximum score. For
every proper partition of 9 into two subsets S; and S5, let T'(5,5:) denote
a tree whose left subtree equals opt_tree,(S5;) and its right subtree equals
opt_treey(S:). By equation (2), we have

scoreq(T'(51,52)) = sum(TOPG(T(S51, 52)))+opt_score,(S1)+opt-score,(5:) .

This implies that
opt_score,(S) = (3)
max (sum(TOPQ(T(Sl, S2))) + opt_scoreQ(Sl) + opt_scoreQ(Sz)) .

S1U8,=5

Let (S, 55) be a partition of § which attains the maximum, then opt_tree,(5)
is defined as 7'(.51, 95).

Equation (3) yields a recursive algorithm to compute the optimal tree (with
respect to the given list of weighted quartets, @): Given @ and S, go over all
partitions {57,595} of 9, and choose a partition which maximizes

sum(TOPo(7'(51,592))) + opt_scoreQ(Sl) + opt_scoreQ(Sz) .

This partition defines which taxa belong to the left subtree, and which to the
right one. Apply the procedure recursively until each subtree has size smaller
than 3. An optimal tree may be constructed by means of backtracking the
partitioning steps.

The drawback of this recursive algorithm is that the score of each set §
is recomputed whenever S is encountered as a subset in a partition. (Thus if
S is of size i, its score will be computed 2"~ times.) In order to avoid this
wasteful repetition, we now employ the dynamic programming paradigm. We
make a record of computed opt_score,(.5) values, so that we will not have to
recompute them. To do this, we scan the subsets S C {1,2,...,n} by increasing
size of 5. This guarantees that in the computation for a set 5, all subsets of
are already scanned over.

5.3 The Code

Let {1},....{n},{1,2},....{n—1,n},....{1,...,n} be an ordering of all 2" —1
non-empty subsets of {1,...,n}, in which every set appears after all its subsets.
For each non-empty subset 5, we compute the optimal score of a phylogenetic
tree for S. In addition we store for each S a partition (5, 5) that induces
the score opt_scoreQ(S). In the backtracking phase, this partition is used to
reconstruct an optimal phylogenetic tree.

Optimal score computation
Go over the sets 5 C {1,...,n} in order,

*By the definition, trees with one or two leaves do not contain any qlca, so for sets S of
size 1 or 2 we define opt_score,(5) = 0.
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o If [5] < 2, then opt_score,y(5) = 0.
e Compute the score of each S-partition, (57, .595), which equals

sum(TOPo(7'(51,592))) + opt_scoreQ(Sl) + opt_scoreQ(Sz) .

o Let opt_score,(S) be a maximal score, and let opt_tree,(5) be a
partition for which the maximal score is obtained.

The optimal score for the whole set is stored in the entry opt_scoreQ({l, ..

Tree Reconstruction
We construct a phylogenetic tree T" with an optimal score as follows:

e The root of T is determined by an optimal partition (5,55) of § =
{1,....n}.

e Recursively build a phylogenetic tree for 57 and 5.

5.4 Algorithm Complexity

The elementary step in the algorithm is checking whether a quartet ¢ is satisfied
by a given partition of 5, (91,52). We notice that each of the four taxa in
q satisfies exactly one of the following three properties with respect to the
partition (57, 55):

1. The taxon is in 9.
2. The taxon is in 5.
3. The taxon is in neither.

We can therefore identify with ¢ a characteristic vector which describes the
presence of its taxa in 57 and S3;. The vector 112N, for example, means the
two elements of first pair are in 57, while one of the elements of the second
pair is in S5, and the other does not belong to the set of taxa currently in
discussion. By corollary 3, we conclude that the root of T'(5},55) is qlca(q)
and that it satisfies ¢. All we need, then, is to construct at the preprocessing
stage, a lookup table of size 3*. The entries in this table are all the possible
characteristic vectors (4-tuples over {1,2, N}). By setting a convention that
the first and second elements in the vector represent the elements of the first
pair in the quartet, a single table may be used for all input quartets.

Checking satisfiability of a given quartet ¢ as described takes 5 memory
accesses (4 to construct the characteristic vector and 1 for the table lookup).
In case the quartet is satisfied, an additional memory access is required to
retrieve its weight, and one floating point addition. So for k£ input quartets, the
value sum(TOP(7'(51,52))) can be computed by performing up to 6k memory
accesses and k floating point additions. Viewing the 6 memory accesses and
the 1 addition as one basic step, this means that finding opt_score,(5) for S
of size © and () of size k takes 2' - k basic steps. This computation is held for
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every set S C {1,...,n}, and therefore the total number of steps in computing
the optimal tree is
3 (") 2k = k3" .
i=0 ¢
In terms of memory, for each subset of {1,...,n} we need an entry with its
optimal score and optimal partition. This means ©(2") memory requirements.

5.4.1 Ramifications

We now turn to describe some improvements of the algorithm. Even though
none of these improvements has a significant effect on the asymptotic behavior
of the algorithm, they all make constant factor improvements to the actual
running time. These seemingly minor improvements of reducing the running
time by constant factors make the difference between the processing of real-life
datasets in reasonable time and resorting to toy problems.

The first observation is that each partition (5, 52) of S is processed twice;
the second time is when 5, and 55 exchange roles. Therefore, the result will not
change if we only scan those partitions where 5| precedes 55 in lexicographic
order. This gives a factor 2 saving.

A common practice in phylogenetic studies is to include in the dataset one
“external” taxon, which is known not to be affiliated with any other taxon in
the data. This taxon, labeled “outgroup”, is later used to root the resulting tree
by placing the new root at the edge that connects the outgroup with the rest of
the tree®>. When we know in advance which taxon is the outgroup, we consider
at the top-level only the partition that places the outgroup in one subtree, and
every other taxon in the other. This means that an optimal tree should be
found just for the set of n — 1 “internal” taxa. Since the dependence of the run
time on n, the number of taxa is proportional to 3", this reduction of n by 1
yields a factor 3 saving.

In the general case, the given input quartets are kept in a list which is se-
quentially scanned for each partition (S57,55). But when all possible k& = (Z)
input quartets are present, the performance can be improved further yet. Con-
sider a partition of a set 5. Instead of checking satisfiability of every one of the
(Z) quartets, we can inhibit the test for those quartets which are known a priory
to be unresolved by 5. In particular, it suffices to inspect only those quartets
which have three or more elements in 5. To implement this, we prepare (in a
preprocessing stage) a four-dimensional array of size n*, where each dimension
is indexed by taxa. The entries in the array are the input quartets and their
weights. Given S, construct a list of the taxa in 5. To scan all quartets which
contain 4 taxa from S, enumerate all 4-tuples of elements in the list. For each
4-tuple the access to the appropriate quartet in the array takes constant time,
and the elementary step takes constant time as well. For the quartets having
exactly 3 elements from 5 use a similar enumeration. Once a relevant quartet
is accessed, we process it (with respect to (57, .95)) as before.

®In fact, there are n — 1 rooted trees at the top level that correspond to the same unrooted
tree (and thus have the same score). Recall that satisfaction of quartets is unaffected by
re-rooting.
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To analyze the amount of saving, we first notice that if we consider a random
set 9 C {1,...,n} (each element chosen independently with probability 1/2)
and a random quartet ¢, the probability that 5 contains three or more elements
from ¢ is 5/16. But while our dynamic programming algorithm does go over all
sets 5, it does not weigh them uniformly: Larger sets are weighted more heavily
(to be precise, a subset of size ¢ has probability 2'/3™). Since larger sets will
contain 3 or more elements from a given quartet more frequently, the overall
saving effect will be less dramatic. However, it is still meaningful. We argue
that we achieve a factor 11/27 saving, compared to going over all quartets for
each 5. For a set S with ¢ taxa, the number of quartets having all 4 taxa in
S is (§). The number of quartets having 3 taxa in S is (5)(n — (). So overall,
the number of quartets that will be inspected at all stages of the dynamic
programming algorithm equals

2 ()| 6) e

We now compare this to the number of quartets inspected using the “all quar-

20216+ Geo] =5

We omit the proof of this combinatorial fact from the paper. The interested
reader may find it in [Pel98]. It is interesting to note that incorporating this

tets” approach.

Lemma 4

improvement into the algorithm did improve the actual running time by about

30%.

6 Computational Results

In this section we describe the results of executing our algorithms on real data.
We implemented both algorithms, as well as supporting software. The geomet-
ric algorithm was implemented using the semidefinite package SDPA [FKN96].
The dynamic programming algorithm was coded in C++. Both of them, as well
as additional software (e.g., to assign scores to trees and to conduct large-scale
experiments), are available on the net [Pel98].

The version that produced the best geometric tree used the following pa-
rameters: Only quartets with confidence level 90% or higher were included in
the objective function. There were 452 such quartets, which means that about
two thirds of the input quartets were ignored.® In addition, we imposed the

5To ensure that no taxon is severly underrepresented in this reduced quartet set, we counted
the number of times that each taxon appears in the input. There are 4 x 452 = 1808 appear-
ances, and under a uniform representation distribution one would expect each taxon to appear
in 1808/15 of them, or about 120 times. Our calculations show that the least frequent taxon
(INS) appears in 82 of the input quartets (4.5%), while the most frequent taxon (PRO) appears
in 157 quartets (8.7%).
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geometric tree optimal tree

Figure 3: Phylogenetic trees obtained by the geometric and optimal methods

Tree Score Satisfied

with Compensation | without Compensation | Quartets

Gregory (1910) 56.1% 47.8% 44.8%
Simpson (1945) 55.2% 49.2% 46.2%
Mckenna (1975) 54.0% 46.9% 44.0%
Novacek (1982) 55.6% 43.1% 39.6%
Shoshani (1986) 61.1% bifurcating 57.7%
Novacek et. al. (1988) 53.0% 36.2% 33.3%
Novacek (1992) 58.1% 48.7% 45.3%
Graur (1997) 71.0% bifurcating 66.7%
Puzzling 71.6% bifurcating 68.1%
Geometric 72.1% bifurcating 68.7%
Optimal 73.4% bifurcating 70.2%

Table 1: Comparison of published trees. Trees with year numbers are from
[Gra93]. “Puzzling” was generated by the algorithm in [SH96], and our quartet
data.

“distance constraint” (v;, v;) < 0.75 for each pair of points. The execution took
less than 5 seconds on a Sun Ultra-4 machine. The resulting tree has score
72.1%.

The dynamic-programming algorithm took into account all 1365 weighted
quartets. The execution took some 7 minutes on a Sun Ultra-4 machine (see
Table 2). The resulting optimal tree is unique and has score 73.4%. The two
trees are shown in Figure 3.

We computed the score (with respect to the same four-taxon input) of other
phylogenetic trees that were published in the literature (references in [Gra93]).
Table 1 lists these scores. It should be noted that most of the earlier trees
are multifurcating. For these trees, the contribution of each unresolved quar-
tet is computed either as 1/3 of its confidence (“with compensation”) or as
0 (“without compensation”). As seen, our algorithms produce the best trees
with respect to the quartet satisfaction criterion on our data-set. We remark
the quartet data was not available during the construction of most of the trees
(therefore their optimization criteria were different). The exceptions, beside
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n time
15 7 min.
16 | 28 min.
17 | 109 min.
18 7 hr.
19 29 hr.
20 | 128 hr.

Table 2: Run times for the “exact” algorithm with all (Z) quartets in the input.
For n = 15,16,20 the times are measured on a $30K machine, in 1997 prices
(Sun Ultra-4 at 300 MHz). For other values of n they are estimated.

our algorithms, are the quartet-puzzling tree and Graur’s tree from 1997. The
quartet puzzling implementation was obtained from [SH96] and modified to
construct a tree from our (unweighted) quartet data. After 1000 puzzling trees
are constructed, a consensus tree is computed using the CONSENSE program
in [Fel89]. This output consensus tree is what we call the “puzzling” tree. The
whole process takes about 10 seconds on the same Sun machine. As seen, the
performance of this method falls just a little short of our geometric algorithm.
Graur’s algorithm uses a different approach and applies a neighbor-joining al-
gorithm on a non-metric distance matrix, defined by pairwise agglomeration
within quartets [Oph97].

7 Discussion

We believe that the methods presented in this paper are significant from a bio-
logical and evolutionary point of view. They allow us to combine partial phylo-
genetic trees into a tree containing all the taxa of interest. This enables the use
of most available sequences, unlike “traditional” reconstruction methods. The
databases of sequences are updated periodically with the accumulation of new
sequence data. Typically such updates still leave many sequences unknown for
many taxa, but they will tend to produce more reliable quartet information.
Our methods should thus enable a periodical reassessment of phylogenetic the-
ories.

Obviously the biological components of this study will have to be refined
and updated in the future. Most importantly, the performance of different tree
making methods and confidence measures will have to be assessed against real
data and simulation results. Another point of interest will be the assignment
of confidence values to the generated tree edges. Our algorithms give no in-
dication that some edges in the generated tree are not evident from the data.
These may in fact be furcations which are arguable from a biological point of
view. A direction for further research and experimentation would be to find an
assignment of support values, given the data and the produced trees.

From the algorithmic point of view, this paper raises a number of inter-
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esting open problems. It would be nice to prove any performance guarantee
for the “geometric” reconstruction method. In fact, we are not aware of any
efficient algorithm for reconstructing trees from weighted quartets whose out-
put is guaranteed to be above one third of the maximum. (A tree chosen at
random is expected to satisfy one third of the quartets). For realistic datasets,
any decrease of the exponent’s base for an “exact” algorithm will be significant.
(Currently the dynamic programming algorithm takes 5 days for datasets with
n = 20 on a $30K machine in 1997 prices.)

The fact that the score of the optimal tree is only 73.4% indicates that the
input is not very reliable. However, even with this limited quality data, both the
geometric and the optimal trees make biological sense. We note, in particular,
the position of Insectivora as an outgroup to the other eutherian taxa [KGA95],
and the monophyly of the extended superordinal taxon Paenungulata, which
includes Edentata [SCM*97]. Our phylogenies are bifurcated and resolved,
unlike most mammalian phylogenies in the literature that are multifurcated
and unresolved. We are currently compiling an updated dataset of mammalian
protein sequences, with which we hope to resolve the 100-year-old problem of
mammalian ordinal phylogeny “not vaguely and generally, but with all possible
precision in place, weight, and measure” (Sir William Herschel, 1738-1822).
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