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Abstract

In the literature, it has been frequently suggested that the connectivity of a protein, i.e., the number of
proteins with which it interacts, is inversely correlated with the rate of evolution. We attempted to
extrapolate from proteins to operons by testing the hypothesis that operons with high transcriptional
connectivity, i.e., operons that are controlled through interactions with many transcription factors, are
evolutionarily more conserved at the structure and sequence levels than low-connectivity operons. With
Escherichia coli used as reference, two structural- and two sequence-conservation measures were deter-
mined for 82 groups of homologous operons from 30 completely-sequenced bacterial genomes. In E. coli,
large operons tend to be regulated by more transcription factors than either smaller operons or single genes.
Large E. coli operons that are regulated by single transcription factors were found to be regulated by
activators more frequently than by repressors. Levels of sequence conservation and structural conservation
of operons were found to be independent of each other, i.c., structurally conserved operons may be
divergent in sequence, and vice versa. Transcriptional connectivity was found to influence neither sequence
nor structural conservation of operons. Although this finding seems to contradict the situation in genes, a
critical review of the literature indicates that although gene connectivity is frequently touted as a factor in
determining rates of evolution, only a very small fraction of the variability in degrees of evolutionary
conservation is explainable by this factor.

Introduction

The relationship between connectivity and evolu-
tionary conservation has been a focus of large
number of studies (e.g., Clarke, Mittenthal & Senn,
1993; Thattai & van Oudenaarden, 2001; Fraser
et al., 2002; Bastolla et al., 2003; Hahn, Conant &
Wagner, 2004). Connectivity of a protein is usually
measured by the number of proteins with which it
interacts, i.c., the number of edges associated with a
protein node within a protein—protein interaction
network. There are several measures of conservation
in proteins, the most common of which is the rate of

amino-acid replacement. We note that connectivity
is usually defined for a single model organism, al-
most invariably a well studied simple unicellular
organism. By necessity, therefore, in comparative
studies it is implicitly assumed that the connectivity
in the organisms for which such knowledge is lacking
is the same as that in the model organism. Degrees of
evolutionary conservation, on the other hand, can
only be defined comparatively, i.e., data on two or
more organisms are needed.

Several authors have studied the relationship
between protein connectivity and evolutionary
rates. From comparisons involving Saccharomyces
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cerevisiae, Schizosaccharomyces pombe, Candida
albicans, and Caenorhabditis elegans, it was con-
cluded that highly connected proteins evolve
slower than sparsely connected ones (Fraser et al.,
2002; Fraser, Wall & Hirsh, 2003). This correlation
was said to be independent of protein essentiality.
The notion of a negative correlation between pro-
tein connectivity and evolutionary rate was chal-
lenged by Jordan et al. (2003a, b), who claimed that
the correlation appears to be due to a few highly
interactive proteins that evolve exceptionally slow.
Moreover, in Escherichia coli, Hahn et al. (2004)
reported no effect of metabolic connectivity on
evolutionary rate.

Many factors beside protein connectivity affect
the rates of molecular evolution of a gene. The
most important factor may be functional con-
straint (Graur & Li, 2000), with genes having dif-
ferent functions and, hence, different selective
constraints, evolving at different rates. Other fac-
tors that may determine the evolutionary rate of a
gene are gene essentiality (Wilson, Carlson, &
White, 1977; Hirsh & Fraser, 2001), level of gene
expression (Pal, Papp, & Hurst, 2001), and gene
duplication (Yang, Gu, & Li, 2003). The physical
position within the genome might also affect the
evolutionary rate of a gene (Williams & Hurst,
2000). The relative contributions of each of these
factors on the molecular evolution of a gene are
not known at present.

It was recently suggested that sequence con-
servation should not be used exclusively to
measure evolutionary conservation. Krylov et al.
(2003) used a gene’s propensity to be lost during
evolution as a measure of evolutionary conserva-
tion. With this measure, they found that proteins
involved in many interactions are lost less fre-
quently during evolution than proteins with fewer
interactions.

In this study we extrapolate from genes to
higher order genetic structures and study the
relationship between connectivity and evolution-
ary conservation in operons. By analogy to the
rules said to govern the evolution of single genes,
we hypothesize that operons with high degrees of
connectivity will be more conserved than operons
with low degrees of connectivity. We note, how-
ever, that the extrapolation is not straightforward,
since the measures of connectivity and evolution-
ary conservation that are useful as far as genes are
concerned are not directly applicable to operons.

We, therefore, modified the definitions and ad-
justed them to operons (see below).

The architecture of bacterial operons is
seldom conserved during evolution (Mushegian &
Koonin, 1996; Siefert et al., 1997, Watanabe et al.,
1997; Itoh et al., 1999). Bacterial genomes can be
characterized by three properties: gene makeup,
gene order, and sequence. Studies comparing these
three properties indicate that gene order is the
least conserved property (Huynen & Bork, 1998),
although its degree of conservation is positively
correlated with those of the other two properties
(Wolf et al., 2001).

In order to ascertain whether operon con-
nectivity is related to operon conservation, we
used the RegulonDB database (Salgado et al.,
2000, 2004) as a source of information on operons
and transcription factors in E. coli. We, then,
compared the E. coli operons to complete or par-
tial counterparts in 30 completely sequenced bac-
terial genomes.

Definitions

Operon connectivity was defined as the number of
transcription factors that bind to the promoter of
an operon and regulate its transcription. Operon
connectivity data is only available for well-studied
model organisms. In this study, we use data from
E. coli.

Operon conservation can be defined at the se-
quence level, as is the practice in genes, or at the
structural level. We used two sequence conservation
measures for operons. The first was the mean
evolutionary rate for all the genes within the
operon. This measure may be problematic because
of the variation in rates among the genes within
the operon. To sidestep this difficulty, we devised a
second measure, the evolutionary rate of the
most conserved gene within the operon. In both
cases, we used the number of amino-acid replace-
ments as calculated from sequence comparisons
with the homologous protein products from
E. coli. Two structural conservation measures
were used: operon identity, defined as the existence
of an operon with the same gene makeup and
geneorder as its homolog in E. coli, and operon
similarity, defined as the existence of an operon
whose gene complement resembles but is not
identical to that of its homolog in E. coli. For a



detailed description of the manner in which
these variables were calculated, see Data and
Methods.

We tested the operon-connectivity/operon-con-
servation hypothesis that predicts that operons that
are regulated by several transcription factors
should be more conserved during evolution than
those that bind a single transcription factor.

Data and methods

Operons, transcription units, and transcription
factors in Escherichia coli

We used the 1/2003 version of RegulonDB in
XML format (Salgado et al., 2000, 2004) for
identifying and linking operons, transcription
units and transcription factors in E. coli K-12.
RegulonDB includes both operon and transcrip-
tion unit data. A transcription unit differs from
an operon because by definition an operon must
contain two or more genes, whereas a transcrip-
tion unit may also contain a single gene. An
operon may also include several promoters to
which transcription factors may bind, whereas a
one-to-one relationship exists between transcrip-
tion units and promoters (Karp et al., 2002).

We first compiled a dataset of 237 entries
consisting of single-transcription-unit operons and
of transcribed single genes that do not belong to
operons, for which the number of transcription
factors is known. The category of ‘transcribed
single genes that do not belong to operons’
may be thought of as single-transcription-
unit operons of length 1. We note that all the
entries in this dataset are independent of one
another and, hence, no complicated statistical
precautions should be taken in subsequent anal-
yses. We shall, henceforth, refer to this compila-
tion as dataset I.

We next compiled a reduced dataset for which
not only the number of transcription factors, but
also the type of regulation (activation or repres-
sion) are known. After omitting all entries with
either unknown or dual (activation and repression)
regulation, we are left with 214 entries in data-
set II.

Dataset III was derived from dataset I by
removing all single gene transcripts. The number
of operons in this dataset is 140.
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Orthology search

The COG (Clusters of Orthologous Groups)
database (Tatusov, Koonin & Lipman, 1997;
Tatusov et al., 2001) was used for identification
of orthologous proteins from different bacterial
species. Since the COG accession is not part of
RegulonDB, for each gene in database III, we
first translated the Blattner number (h-number) in
RegulonDB into its corresponding COG number.
This translation was performed using version
7/2003 of the E. coli K-12 protein table file (ftp://
ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli
K12/NC_000913_ptt). E. coli operons for which
not all b numbers had corresponding COG
numbers were removed from further analysis. The
total number of E. coli operons used in the
comparative part of the study (dataset IV) was
82. The COG accession number of each protein
in dataset IV was, then, used to locate its or-
thologs in the other bacterial genomes. The bac-
terial protein table files including this information
were downloaded from  ftp://ncbi.nih.gov/
genomes/Bacteria/.

Bacterial genomes

The COG database consists of proteins from 50
completely sequenced genomes. Taxonomic
exclusions from our study were based on several
criteria: (a) In cases in which several strains from
the same species were listed, we selected the one
with the highest number of genes associated with
COG accession numbers, and discarded the other
strains. (b) Strains of E. coli other than the refer-
ence strain were excluded. (c¢) Bacterial with either
unspecified taxonomic affiliation or defined in the
COG database as ‘Bacteria,” were omitted. In
addition, we decided not to include members of
higher taxa of dubious monophyly, such as mem-
bers of the beta and delta/epsilon proteobacteria,
which for unknown reasons are clumped under the
unspecific name ‘Proteobacteria.” After the ‘tri-
age,” our study comprised of 30 bacterial genomes
(other than E. coli), classified into four taxa (see
Table 1). In cases in which the genomic sequence
was compartmentalized into several fragments,
chromosomes or plasmids, the sequence was line-
arized and concatenated.
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Table 1. Bacterial taxa used in the comparative analysis. Each entry is listed as in the COG database. Species abbreviations are lis-
ted in parentheses. Taxa above the species level are in boldface with numbers of constituent species listed in parentheses

Taxon

GenBank Accession Number

Alpha proteobacteria (7)

Agrobacterium tumefaciens C58 Cereon (Atu)
Brucella melitensis (Bme)

Caulobacter crescentus (Ccr)

Mesorhizobium loti (Mlo)

Rickettsia conorii (Rco)

Rickettsia prowazekii (Rpr)

Sinorhizobium meliloti (Sme)

Gamma proteobacteria (8)
Buchnera sp. (Buc)

Haemophilus influenzae (Hin)
Pasteurella multocida (Pmu)
Pseudomonas aeruginosa (Pae)
Salmonella typhimurium LT2 (Sty)
Vibrio cholerae (Vch)

Xylella fastidiosa (Xfa)

Yersinia pestis CO92 (Ype)

Gram plus bacteria (12)

Bacillus halodurans (Bha)

Bacillus subtilis (Bsu)

Clostridium acetobutylicum (Cac)
Lactococcus lactis (Lia)

Listeria innocua (Lin)
Mycoplasma genitalium (Mge)
Mycoplasma pneumoniae (Mpn)
Mycoplasma pulmonis (Mpu)
Staphylococcus aureus N315 (Sau)
Streptococcus pneumoniae TIGR4 (Spn)
Streptococcus pyogenes (Spy)

Ureaplasma urealyticum (Uur)

Actinobacteria (3)

Corynebacterium glutamicum (Cgl)
Mycobacterium leprae (Mle)
Mycobacterium tuberculosis H37Rv (Mtu)

NC_003062, NC_003063, NC_003064, NC_003065
NC_003317, NC_003318

NC_002696

NC_002678, NC_002679, NC_002682

NC_003103

NC_000963

NC_003047, NC_003078, NC_003037

NC_002528

NC_000907

NC_002663

NC_002516

NC_003197, NC_003277
NC_002505, NC_002506
NC_002488, NC_002490
NC_003143, NC_003131, NC_003134

NC_002570
NC_000964
NC_003030, NC_001988
NC_002662
NC_003212, NC_003383
NC_000908
NC_000912
NC_002771
NC_002745, NC_003140
NC_003028
NC_002737
NC_002162

NC_003450
NC_002677
NC_000962

Identification of homologous operons

We looked for the appearance of orthologous
genes from each E. coli operon in the other
bacterial genomes. A homologous operon was
defined as a collection of orthologous genes to
those within an E. coli operon that appeared in

close proximity to one another in the other gen-
ome. A homologous operon was defined as such
even if its operonic identity was not confirmed
experimentally. Structural similarities between an
operon in E. coli and its homologous counterpart
in another bacterium were classified into four
groups according to gene order conservation, by



using slightly modified definitions from Itoh et al.
(1999): (a) The highest degree of structural con-
servation is ‘identity,” whereby both gene makeup
and gene order are the same as in the E. coli
counterpart. Identity, as far as gene order is
concerned, means that the relative positions of an
operon’s constituent genes relative to the mRNA
transcript have been strictly preserved. In our
analysis, operons with internal gene duplications
are also considered as identical. For example,
operons ABC and ABBC are considered identi-
cal. (b) An operon structure is defined as ‘similar’
if the two operons differ from each other by
internal translocations, deletions, and at most
two insertions. (¢c) An operon structure was de-
fined as ‘destructed’ if two or more orthologs of
the genes within an E. coli operon were found in
the other genome, but the operon itself was not.
(d) An operon structure was defined as ‘un-
known’ if no orthologous genes or at most one
orthologous gene from the E. coli operon was
found in the other genome. We divided the ‘un-
known’ category into two subcategories depend-
ing on whether one or no orthologous genes were
found.

Structural conservation scores

All structural conservation scores were defined per
taxonomic group, rather than for pairs of taxa. We
used three conservation scores (expressed as per-
centages): (a) Unweighted score for identical ope-
rons was defined as the number of bacterial species
within a taxonomic group in which the operon
under study is identical, divided by the size of the
taxonomic group. (b) Weighted score for identical
operons was defined as the number of bacteria in
which the operon is identical, divided by the
number of bacteria whose genomes contain all the
genes in the operon. (¢) Weighted score for similar
operons was defined as the number of bacteria with
a similar or an identical operon in their genome,
divided by the number of bacteria whose genome
contains at least two genes from this operon. All
three scores were calculated for each operon in
each of four taxonomic groups. We used Spear-
man non-parametric correlation test and Mann-
Whitney non-parametric test to test the difference
between any two groups.
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Sequence conservation scores

Proteins derived from E. coli operons that had an
identical counterpart in at least one other species
were extracted from the E. coli K-12 protein
FASTA file (ftp://ftp.ncbi.nih.gov/genomes/ Bac-
teria/Escherichia_coli_K12/NC_000913.faa).
Names of genes from the other bacteria were ex-
tracted from protein table files according to their
COG numbers. Protein sequences were extracted
from the protein FASTA files (ftp://ncbi.nih.gov/
genomes/Bacteria/).

Orthologous proteins were aligned using
ClustalW (Higgins, Thompson & Gibson, 1996).
Pairwise protein distances were only calculated for
proteins derived from identical operons. The dis-
tances were calculated by using the PROTDIST
program from the PHYLIP package (Felsenstein,
1993) with the PAM matrix. In cases in which
more than one conserved operon appeared in a
bacterial genome, the operon with the average
shortest distance to the proteins from the E. coli
operon was chosen.

Two sequence conservation scores were calcu-
lated per operon for each of the four taxonomic
groups: (a) mean distance over all the proteins in
the operons from all bacteria in a taxonomic
group, and (b) mean distance for the most con-
served gene within the operon.

Results

Characterization of transcription units in
Escherichia coli

We first study the internal relationships between
the number of transcription factors and type of
regulation in E. coli, on the one hand, and tran-
scription-unit size (defined as the number of genes
within it), on the other (for definitions, see Data
and methods). We used dataset I, which includes
127 single genes and 42, 33, 14, 11, 2, 5, 1, and 2
operons of sizes of 2, 3, 4, 5, 6, 7, 8, and 15,
respectively. A significant positive association
(r = 0.15, P = 0.015) between transcription-unit
size and number of transcription factors was ob-
tained with the Spearman’s rank correlation text.
This indicates that, larger transcription units tend
to be regulated by more transcription factors.

We used dataset II to test for a possible rela-
tionship between the type of regulation (activation
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Fraction of transcription units regulated
by a single activator or repressor
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Transcription unit size

Figure 1. Fraction of transcription units regulated by a single activator (black) or a single repressor (grey).

or repression) and transcription-unit size. For
transcription units regulated by a single tran-
scription factor, we found a significant association
with type of regulation. That is, larger transcrip-
tion units were found to be regulated by activators
more often than shorter transcription units, which
were mainly regulated by repressors (Mann—
Whitney test, n = 142, P = 0.002, see Figure 1).
This result was also obtained when self-regulated
transcription units, suspected to be mainly
regulated by repression (Martinez-Antonio &
Collado-Vides, 2003) were removed from the
analysis. No such correlation was found between
the type of regulation for transcription units
regulated by more than a single transcription fac-
tor (Kruskal-Wallis nonparametric ANOVA for
two transcription factors, n = 56; P = 0.768;
Kruskal-Wallis nonparametric ANOVA for three
transcription factors, n = 12; P = 0.800).

Structural evolutionary conservation of operons

In the comparative part of our study, we used the
82 operons for which all the constituent genes in
E. coli had COG accessions (dataset 1V). Four
structural conservation measures were studied:
identity, similarity, destruction, and unknown (see
Data and methods). Degrees of structural conser-

vation for each of the 82 operons in each of 30
bacterial genomes are listed in Table 2.

Sixty-four of the E. coli operons were found in
identical gene makeup and gene order in at least
one other bacterium. The numbers of E. coli ope-
rons found in at least one other bacterium were 61,
22, 22, and 7 for gamma proteobacteria, alpha
proteobacteria, Gram plus bacteria, and actino-
bacteria, respectively. As far as similar and iden-
tical operons are concerned, 78 operons appeared
in at least one genome, while 4 operons did not
appear in any of the genomes included in our
study. The numbers of similar plus identical ope-
rons found in each taxonomic group were 77, 52,
55 and 36 for gamma proteobacteria, alpha pro-
teobacteria, Gram plus bacteria, and actinobacte-
ria, respectively. As expected, the number of
conserved operons in the different bacterial taxa
increased with phylogenetic relatedness to E. coli.
For example, the number of conserved operons
was the highest in gamma proteobacteria, to which
E. coli also belongs. The group with the least
structural similarity was actinobacteria. These re-
sults are in agreement with Itoh et al. (1999),
however, due to a different definition of orthologs,
our results are not identical to those in their Ta-
ble 1.

The most conserved operon was phoBR
(Makino et al., 1986; Wanner & Chang, 1987),
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which was found intact in 83% of the genomes in
our study.

Effect of transcriptional regulation on structural
conservation in identical operons

The distribution of unweighted and weighted
conservation scores (Table 3) in the four higher
taxa are shown in Figures 2a, b. While only up to
5% of E. coli operons had unweighted conserva-
tion scores larger than 80% in gamma proteobac-
teria (Figure 2a), 32% of the operons in E. coli had
weighted scores larger than 80% (Figure 2b).
Unsurprisingly, the highest weighted and un-

(a) Alpha Gamma
proteobacteria proteobacteria
2% g% 5%

10% 1%
a% 10%
4a%
78%
30%

Gamma
proteobacteria

Alpha
proteobacteria

(b)

24% 25% 22,
7%
62% 59%
13% 9%
2%
22%

Gamma
proteobacteria

Alpha
proteobacteria

9%
28% 12%
49%
13%
4%
10% 9%
7%

(c)

57%

157

weighted scores are found in gamma proteobac-
teria.

First, we attempted to rule out the possibility
that operon size may influence our results. We
found no correlation between the weighted score
and operon size. In contrast, a negative Spearman’s
rank correlation coefficient was found for the rela-
tion between the unweighted score and operon size
in two out of the four taxonomic groups (Table 4a).
This difference seems to result from the definitions
of these two variables. In the unweighted score, the
absence of genes from the genome scores as 0. Thus,
E. coli operons with a relatively high number of
genes have a high probability of lacking some
homologous genes in other bacteria. These operons

Gram plus
bacteria Actinobacteria
4% 4% 1%

9%

4%

1M%

Gram plus

bacteria Actinobacteria

19%

Gram plus
bacteria Actinobacteria
38%

48%

5% g9

I 0-20%

Bl 20-40%
[ 40-80%
I 60-80%
I 50-100%

Figure 2. Conservation scores in various taxa. (a) Distribution of unweighted scores for identical operons. (b) Distribution of
weighted scores for identical operons. (c) Distribution of weighted scores for similar operons.
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Table 4. Factors affecting the conservation scores for identical operons. In sections a—c we used Spearman correlation. In section d

we used Mann—Whitney test

Alpha Gamma Gram plus Actinobacteria
proteobacteria proteobacteria bacteria
a. Operon size vs. Unweighted scores n = 82 n = 82 n =82 n = 82
r = —=0.08 r = -0.35 r = -0.26 r=-0.12
p = 0474 p = 0.001 p = 0.020 p = 0.301
Weighted scores n =55 n =79 n =55 n = 36
r = -0.05 r = -0.19 r = -0.09 r = -0.04
p = 0.708 p = 0.099 p = 0.505 p = 0.826
b. Number of binding Unweighted scores n =82 n =82 n =82 n =82
transcription factors vs. r = -0.07 r = —-0.08 r = -0.09 r = -0.03
p = 0.552 p = 0473 p = 0402 p = 0.769
Weighted scores n =55 n=179 n =155 n = 36
r = 0.08 r=0.14 r=-0.11 r = 0.06
p = 0.585 p = 0222 p = 0418 p = 0.744
c. Number of binding Unweighted n =37 n =37 n =37 n =37
transcription facros vs. scores for Size 2 r = 0.01 r = -0.11 r = 0.05 r = -0.06
p = 0.969 p = 0.530 p = 0.767 p = 0.743
Unweighted n = 22 n = 22 n = 22 n = 22
scores for Size 3 r = 0.11 r = 0.03 r = 0.07 r = -0.10
p = 0.610 p = 0.8% p = 0.763 p = 0.673
d. Type of single transcription Unweighted scores p = 0257 p = 0.801 p = 0244 p = 0.186
factor of operon in size 2 vs. Weighted scores p = 0.186 p = 0.345 p = 0.361 p = 0.841

tend to lower the correlation coefficient. This phe-
nomenon disappears when the score is weighted.

Next, we ask whether the number of transcrip-
tion factors affects the probability that an operon
will remain identical in gene makeup and gene or-
der in the four higher taxa. No correlation was
found between either of the two conservation
scores and the number of transcription factors
(Table 4b). We note that since the absence of genes
from a genome disqualifies an operon from being
used in the weighted scheme, the numbers of ope-
rons within a taxon are different from each other
depending on weighting. The results are presented
as pie distributions of scores for one and two or
more transcription factors (Fig 3a, b). There seems
to be no relationship between structural conserva-
tion and number of transcription factors.

The relationship between the unweighted con-
servation scores and the number of transcription
factors was tested separately for operons of dif-
ferent sizes (Table 4c). Out of the 82 tested ope-
rons, 37 had two genes and 22 had three genes.
The number of operons with four or more genes

was too small to be included in a meaningful sta-
tistical analysis. Again, no correlation was found
between the number of transcription factors and
the unweighed scores for both size 2 and size 3
operons. Thus, the conservation of operons seems
to be independent of the number of transcription
factors. In a Mann-Whitney test, no dependence
was found between conservation and type of
transcription regulation in a group of operons of
size 2 that are controlled by a single transcription
factor (n = 23) (Table 4d).

Effect of transcriptional regulation on structural
conservation of similar operons

Since the number of fully conserved operons is quite
small in bacteria that are only distantly related to
E. coli, we attempted to test the influence of the
number of transcription factor with a less strict
conservation score. Thus, we combined the weigh-
ted scores for identical and similar operons. The
weighted conservation scores are listed in Table 3
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Table 5. Factors affecting the conservation scores for similar operons. Rows A—-C were detected by Spearman correlation. Row D

was detected using Mann—Whitney test

Alpha Gamma Gram plus Actinobacteria
proteobacteria proteobacteria bacteria
a. Operon size vs. scores n = 67 n = 82 n =172 n = 58
ro= 022 r = 025 r = 030 ro= 028
p = 0.067 p = 0.022 p = 0.010 p = 0.031
b. Number of binding transcription n = 67 n = 82 n = 72 n = 58
factors vs. scores r = —0.003 r=0.12 r = 0.06 r = -0.05
p = 0979 p = 0.280 p = 0.605 p = 0.696
c. Number of transcription factors after Size 2 n = 26 n = 37 n = 31 n = 21
cleaning size effect for operon scores r = -0.01 r = 0.06 r = 0.03 r = 027
p = 0975 p = 0.744 p = 0.856 p = 0.240
Size 3 n =18 n =22 n =19 n =15
r=-0.12 r = 0.08 r=0.13 r = —0.603
p = 0.648 p = 0713 p = 0.602 p = 0013
d. Type of single transcription factor p = 0.488 p = 0361 p = 0879 p = 0.850

of operon in size 2 vs. scores

and their distribution in the four taxa are shown in
Figure 2c. About 50% of the operons in the differ-
ent taxonomic groups had weighted conservation
scores larger than 80%. The results obtained for the
combined group of identical and similar operons
are comparable to those obtained for the group of
identical operons only (Table 5). Operon size was
found to have an effect on the degree of structural
conservation, however, this effect was in the oppo-
site direction to that observed for the group of
identical operons. Hence, longer operons seem to be
more conserved. Notwithstanding this difference,
the correlation may be a combinatorial artifact
resulting from the over-sampling of similar frag-
ments from long operons. When dividing the ope-
rons into different operon sizes, a dependence
between conservation and number of transcription
factors was only found in one data set (operons of
length 3 in actinobacteria; n = 15. We can, there-
fore, conclude that the regulation of an operon is
unrelated to its structural conservation.

Effect of transcriptional regulation on sequence
conservation of operons

Possible effects of the number of transcription fac-
tors on sequence conservation were tested for 64 E.
coli operons, for which structurally identical coun-

terparts were found in at least one other bacterium.
The number of amino acid replacements was cal-
culated in a pairwise manner between each E. coli
gene and its homolog. Two measures of aminoacid
sequence distance were used, mean distance and
least distance (Table 6). As was the case with the
structural conservation scores, the highest sequence
conservation was found in gamma proteobacteria
and the lowest in actinobacteria. With Spearman
nonparametric test, we found no correlation be-
tween the number of transcription factors and either
distances (Table 7).

Lack of relationship between structural conservation
and sequence conservation

The relationship between structural and sequence
conservation scores was tested by using the
weighted scores for identical and similar operons
and the two sequence scores. With Spearman
nonparametric test, we found no correlation be-
tween structural conservation and sequence con-
servation in any of the tests (Table 8).

Discussion

Transcription regulation has been extensively
studied in E. coli (e.g. Thieffry et al., 1998; Babu &
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Table 7. Spearman correlation tests for relationship between sequence conservation scores and the number of transcription factors

Alpha proteobacteria

Gamma proteobacteria

Gram plus bacteria Actinobacteria

22
0.27
0.22

Operon mean distance

22
0.28
0.20

Operon least distance

61
0.09

= 0.51

61
0.07

= 0.59

n =22 n=717
r = 0.02 nd

p = 0093

n =22 n=717
r=-0.19 nd

p = 041

nd — not detected.

Teichmann, 2003; Martinez-Antonio & Collado-
Vides, 2003). In our analysis, large transcription
units from E. coli were found to be regulated by
more transcription factors than smaller ones.
Large transcription units, thus, appear to require
tighter regulation. We note, however, that the
correlation coefficient was small (r = 0.15,
P = 0.015). In addition, we found that when
regulated by a single transcription factor, large E.
coli operons have a higher chance of being regu-
lated by activators than either small operons or
single genes (Figure 1). Since promoters regulated
by repressors are known to be stronger, i.e., to

produce higher quantities of transcripts than those
regulated by activators (Choy & Adhya, 1996), it is
possible that the preponderance of activators in
large operons, as well as the large number of
transcription factors associated with large oper-
ons, may have evolved to prevent unnecessary and
energetically costly transcription and translation
of these operons.

In agreement with previous reports (Mushegian
and Koonin, 1996; Siefert et al., 1997; Watanabe
et al., 1997; Itoh et al., 1999), we find that operons
tend to evolve rapidly. A minor exception to this
rule seems to be the two-gene phoBR operon

Table 8. Spearman correlation tests for relationship between structural conservation score and sequence conservation scores

Alpha proteobacteria Gamma proteobacteria Gram plus bacteria Actinobacteria
Weighted score for identical n =22 n = 61 n =22 n=717
operons vs. mean distance

r = 0.02 r = 0.11 r = 0.05 nd

p =093 p = 0.39 p =082
Weighted score for identical n =22 n = 61 n =22 n="717
operons vs. least distance

r=0.16 r = 0.09 r=0.14 nd

p =047 p = 0.50 p = 0.53
Weighted score for similar n =22 n = 61 n =22 n=717
operons vs. mean distance

r=0.03 r=0.24 r = 0.40 nd

p = 0.89 p = 0.07 p = 0.06
Weighted score for similar n =22 n = 61 n =22 n=717
operons vs. least distance

r = 0.06 r =021 r=0.15 nd

p =079 p = 0.11 p = 0.51

nd - not detected.
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(Makino et al., 1986; Wanner & Chang, 1987,
Anba et al., 1990; von Kruger, Humphreys &
Ketley, 1999; Pragai et al., 2004). One of the genes
in this operon is phoB, which belongs to a very
small group of positively autoregulated genes
(Thieffry et al., 1998). This transcription factor
controls the phosphate regulon, which is com-
posed of at least 31 genes located in eight operons
(Wanner, 1993). The second gene in this operon is
phoR, which is a sensory protein for the same
phoBR-controlled regulon (Wanner & Chang,
1987).

How can we explain this lack of conservation?
Itoh et al. (1999) suggested that selection against
the destruction of genes may be weak, such that
changes in operon structure and composition may
be selectively neutral during long-term evolution.
This hypothesis implies that the main attributes of
operons, i.e., co-regulation of transcription and
cotranslation, are unimportant. If, however, tran-
scription co-regulation and co-translation are
important, then the question arises as to how are
these two processes maintained during evolution in
the absence of operon-structure conservation. As
far as co-regulation of transcription is concerned,
one promising answer involves the concept of
regulon (Maas & Clark, 1964) i.e., the possibility
that co-regulation of two or more genes may be
maintained even in the absence of cohabitation
within the same operon. A second possible answer
involves the concept of uber-operon (Lathe, Snel &
Bork, 2000). According to this hypothesis, what is
conserved are sets of operons, whereas the com-
position of each individual operon within the set is
not. As far as co-translation is concerned, the
current consensus is that co-translation cannot be
maintained in the absence of physical proximity.
Indeed, gene pairs whose physical proximity is
maintained during evolution appear to produce
proteins that co-interact physically (Dandekar et
al., 1998) or belong to the same biochemical
pathway (Yanai, Mellor & DeLisi, 2002).

Our findings suggest that the number of tran-
scription factors has no influence on either the
structural or sequence conservation of operons.
These conclusions were independent of the mea-
sures of conservation used in our analyses. These
findings stand in contrast to results pertaining to
single genes in which it had been shown that gene
loss occurs less frequently in highly connected
genes (Krylov et al., 2003). The question now is:

Why is the loss of a single gene dependent on its
connectivity, whereas the loss of an operon is not?

We propose several explanations for this dis-
parity. First, the difference may be due to the use
of different network types. Studies dealing with the
influence of connectivity on single genes used
networks of protein-protein interactions, whereas
our analysis used a transcriptional regulatory
network.

Second, it is possible that our results are af-
fected by an assumption concerning the conser-
vation of connectivity during evolution. In a
manner similar to the usual practice in the litera-
ture (Fraser et al., 2002; Fraser, Wall & Hirsh,
2003; Jordan, Wolf & Koonin, 2003a, b; Krylov
et al., 2003; Hahn, Conant & Wagner, 2004), we
too assumed identical connectivities among all the
genomes under comparison. Such an assumption is
necessary due to data insufficiency. However, this
assumption may not apply or may only partially
apply in nature, and one may obtain different
outcomes when data on protein and regulatory
networks become available for bacteria other than
E. coli.

Third, the difference may be due to the fact that
the correlation between protein connectivity and
evolutionary conservation is mostly due to the
existence of highly connected protein ‘hubs’ (e.g.,
Krolov et al., 2003). Note, that operons regulated
by more than two transcription factors constituted
only a minute fraction (~7%) in our dataset. Al-
though very complex network motifs were re-
ported for the E. coli regulation network (Shen-
Orr et al., 2002), it appears that compensating for
protein hubs in protein networks is more difficult
than in transcrition-regulation networks. Such
compensatory effects could be achieved by regu-
lons or uber operons as was previously suggested
(Lathe, Snel & Bork, 2000).

Finally, we might wish to consider the possi-
bility that the difference between gene connectivity
and operon connectivity is only apparent. A cri-
tical review of the literature indicates that al-
though gene connectivity is frequently touted as an
important factor in determining rates of evolution,
only a very small fraction of the variability in de-
grees of evolutionary conservation is explainable
by this factor (Fraser et al., 2002; Fraser, Wall &
Hirsh, 2003; Jordan, Wolf & Koonin, 2003a, b;
Krylov et al., 2003; Hahn, Conant & Wagner,
2004). The explainable fraction ranges from 0%



(Hahn, Conant & Wagner, 2004) to 12% (Krylov
et al., 2003). It is, therefore, possible that detecting
such a weak effect in a complex genetic entity, such
as the operon, is extremely difficult, especially with
small sample sizes.
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