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Abstract

Numerous segmentation methods for the detection of compositionally homogeneous domains within genomic sequences
have been proposed. Unfortunately, these methods yield inconsistent results. Here, we present a benchmark consisting of
two sets of simulated genomic sequences for testing the performances of segmentation algorithms. Sequences in the first
set are composed of fixed-sized homogeneous domains, distinct in their between-domain guanine and cytosine (GC)
content variability. The sequences in the second set are composed of a mosaic of many short domains and a few long ones,
distinguished by sharp GC content boundaries between neighboring domains. We use these sets to test the performance
of seven segmentation algorithms in the literature. Our results show that recursive segmentation algorithms based on the
Jensen–Shannon divergence outperform all other algorithms. However, even these algorithms perform poorly in certain
instances because of the arbitrary choice of a segmentation-stopping criterion.

Key words: isochores, GC content, segmentation algorithms, Jensen–Shannon divergence statistic, entropy, genome
composition, benchmark simulations.

Introduction
In 1976, Bernardi and colleagues (Macaya et al. 1976) put
forward a theory concerning the compositional makeup of
vertebrate genomes. This description, later christened ‘‘the
isochore theory’’ (Cuny et al. 1981), was based on buoyant
density data of melted DNA fragments. Isochores were de-
fined as genomic fragments longer than 300 kb that are
‘‘relatively homogeneous’’ in their guanine and cytosine
(GC) composition (Macaya et al. 1976; Cuny et al. 1981;
Bernardi et al. 1985; Bernardi 2000; Clay et al. 2001; Pavlicek
et al. 2002). For example, the human genome was described
as a mosaic of isochores belonging to five families: L1, L2,
H1, H2, and H3, whose corresponding ranges of GC con-
tents were said to be less than 38%, 38–42%, 42–47%,
47–52%, and more than 52%, respectively (Bernardi 2001).

With the advent of genome sequencing and the avail-
ability of whole-genome sequences, the isochore theory
was challenged (Nekrutenko and Li 2000; Häring and Kypr
2001; International HumanGenome Sequencing Consortium
2001; Cohen et al. 2005). Determining whether isochores ex-
ist requires an unambiguous definition of what constitutes
an isochore. In the absence of an agreed-upon definition
of ‘‘relative homogeneity,’’ the concept of ‘‘isochore’’ has
frequently been revised following conflicting results by differ-
ent segmentation algorithms. Much of the controversy over
the existence of isochores appears to be the result of the
difficulties in identifying compositionally homogeneous do-
mains within genome sequences using existing methods.

Many methods for isochore detection in genomic
sequences have been proposed. These methods use the
genomic sequence as sole input and partition the sequence

into compositionally homogeneous domains according to
predefined criteria. Segmentation methods include non-
overlapping, sliding window methods (Bernardi 2001; Clay
et al. 2001; International Human Genome Sequencing Con-
sortium 2001; Guéguen 2005; Costantini et al. 2006), walk-
ing Markov models (Fickett et al. 1992), hidden Markov
models (Churchill 1989, 1992; Guéguen 2005), recursive
segmentation methods (Bernaola-Galván et al. 1996; Oliver
et al. 1999, 2004; Li 2001a, 2001b, 2002; Cohen et al. 2005),
Bayesian methods (Husmeier and Wright 2002; Boys
and Henderson 2004; Guéguen 2005), and least squares es-
timation methods (Haiminen and Mannila 2007). Other
methods may be found in Braun and Müller (1998).

Unfortunately, these methods yielded inconsistent re-
sults (see fig. 1 in Schmidt and Frishman 2008). To illustrate
this problem, we present the segmentation results ob-
tained by applying seven commonly used segmentation
algorithms on a 1-Mb sequence of human chromosome 1
(fig. 1). Some algorithms partitioned theDNA sequence into
a few longdomains,whereas others yieldedmany short ones.
Similarly, some algorithms detected domains that are nearly
equal in length,whereas thedomains identifiedbyothers ex-
hibited no characteristic length scale. Thus, at the present
time, one cannot even state with any degree of certainty
where an isochore starts andwhere it ends, let alonedescribe
the isochoric structure of the genome.

As stated above, algorithm validation in the context of
isochores is problematic because of the vagueness of the
definition of isochores. It has, thus, become a common
practice to ‘‘test’’ the effectiveness of a segmentation algo-
rithm by its ability to identify previously ‘‘defined’’
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isochores, such as those claimed to exist in the human ma-
jor histocompatibility complex locus (Li 2001a, 2001b, 2002;
Pavlicek et al. 2002; Li et al. 2003; Oliver et al. 2004; Guéguen
2005; Haiminen and Mannila 2007; Haiminen et al. 2007),
where sharp GC content transitions have been reported
(Fukagawa et al. 1995; Eyre-Walker and Hurst 2001). How-
ever, this approach is of limited use because a test
performed in one region of the genome may not be appli-
cable to other regions. Another common testing practice is
to partition the human genome and show that isochores
exist (Bernardi 2001; Wen and Zhang 2003; Oliver et al.
2004; Haiminen and Mannila 2007). This approach is circu-
lar, as isochores are postulated to be regions detected by an
isochore-finding algorithm. Recent approaches (Haiminen
et al. 2007; Schmidt and Frishman 2008) endeavor to find
consensus isochores by integrating results of different seg-
mentation methods. Although this approach may seem
reasonable, we note that using questionable methods
before testing them on benchmark simulations does not
produce indisputable results.

In this study, we tried to avoid some of the semantic
confusion regarding isochores and focused on quantifying
the reliability of different segmentation algorithms. For this
purpose, we generated genomic sequences containing
a predetermined number of compositionally homogeneous
domains, each separated from adjacent domains by sharp
changes in GC content. Regardless of one’s point of view,
these simulated domains should be recognized as iso-
chores. Hence, we set up a useful benchmark that enables
us to test the ability of different segmentation algorithms
to identify isochores. We did not attempt to capture all the
statistical complexity of the genome. Our goal was merely
to construct a very simple model of a genome consisting of
compositionally homogeneous domains. Segmentation al-
gorithms that do not perform well in this simple setting
cannot be expected to perform well in real genomes. An
additional goal was to identify intrinsic biases and system-
atic errors in the segmentation methods to help the devel-
opment of improved segmentation algorithms.

Materials and Methods

Data Retrieval and Filtering
We downloaded human chromosome 1 (build 36.2) from
the NCBI ftpWeb site (ftp://ftp.ncbi.nlm.nih.gov/genomes/)
and excluded Ns (unknown nucleotides or nulls).

Simulating Sequences with Fixed-Sized
Homogeneous Domains
We tested the capability of different algorithms to detect
compositionally homogeneous domains in two different
simulation sets. In the first simulation set, we generated ge-
nomic sequences of different lengths, each composed of ten
fixed-sized homogeneous domains distinct from one an-
other in their GC composition. We manipulated two var-
iables for every simulated genomic sequence: the size of
the homogeneous domains and the between-domain var-
iability rsequence, defined as the standard deviation (SD) of
the mean GC content of all domains in a sequence.

For each sequence, domain lengths were selected from
nine possible lengths: 10 kb, 50 kb, 100 kb, 200 kb, 300 kb,
500 kb, 1 Mb, 5 Mb, and 10 Mb. The between-domain var-
iability (rsequence) was selected from five possible values:
0, 2.5, 5, 7.5, and 10, where 0 indicates a completely uniform
sequence with indistinguishable domains and 10 indicates
a high between-domain variation (fig. 2). The sequence
mean GC content (lGCsequence) was randomly drawn from
a uniform distribution ranging from 10 to 90. For every
domain in the sequence, we determined the mean GC con-
tent (lGCdomain) using the following equation:

lGCdomain 5 lGCsequence þ ðrsequence � RnormalÞ: ð1Þ

Here, Rnormal is a random variable drawn from a normal
distribution with a mean 0 and a SD 1. We used only
lGCdomain within the range of 0 and 100. The nucleotides
within every domain were uniformly distributed. Our data
set consisted of 100 matrices composed of sequences with
nine possible domain lengths and five possible between-
domain variability values (a total of 4,500 sequences).

Simulating Chromosomal Sequences with
Different-Sized Homogeneous Domains
In our second simulation set, we generated 200 chromo-
somal sequences consisting of few long homogeneous do-
mains (.10 kb) and many short domains (1 kb). One
hundred of the chromosomal sequences were composed
of 100 long domains with lengths (Ldomain) drawn from
a normal distribution using

Ldomain 5 l þ ðr � RnormalÞ; ð2Þ

with mean (l) of 10,000 and SD (r) of 500,000. The other 100
chromosomal sequences were created similarly with long

FIG. 1. Different compositional domains found on a 1-Mb fragment from human chromosome 1 by different segmentation algorithms (see
Algorithms in Materials and Methods). To avoid clutter, only long domains (.10 kb) are shown.
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domain lengths drawn from a power-law probability distribu-
tion p(x) 5 Cx�a. Sequences were generated with a 5 1.55
and xmin 5 10 kb using the Matlab script randht.m (version
1.0) (Clauset et al. 2009) provided at http://www.santafe.edu/
;aaronc/powerlaws/. The exponent a defining the power-law
distribution was determined by partitioning the human ge-
nome with the DJS algorithm (see Algorithms) and plotting

the homogeneous domains on a log-log scale histogram using
logarithmic binning (Newman 2005). We note that power-law
distributions are reported to characterize mammalian ge-
nomes, and the choice of exponent a falls within the range
commonly used in the literature (e.g., Clay et al. 2001; Cohen
et al. 2005). The total length of the short domains was arbi-
trarily set to 1% of the chromosomal sequence length. All
domain positions were selected randomly. The mean GC con-
tent of the long domains was determined using equation (1)
with lGCsequence 5 40 and rsequence 5 5. The nucleotide dis-
tribution within each domain was uniform. The GC contents
of short domain pairs were chosen randomly from uniform
distributions ranging between 0% and 40% and between
60% and 100% to form clusters of alternating GC content.
Supplementary table S1 presents some statistical information
regarding the chromosomal sequences generated in the sec-
ond simulated set. We limited the discussion to chromosomal
sequences created with domain lengths drawn from a power-
law distribution. Results were robust to the choice of distri-
bution from which domain lengths were drawn.

Prior to employing the algorithms on the simulated ge-
nomic sequences and chromosomal sequences, we evalu-
ated the differences in the mean GC content between all
adjacent domains. Although domains were created inde-
pendently from one another, occasionally two or more ad-
jacent domains may have had very similar GC content by
chance. Domains with a difference between their mean GC
content smaller than a predetermined cutoff value of 1%
were concatenated.

GC Content Calculation
Each sequence was divided into 32-bp nonoverlapping win-
dows in length. We chose to work on short windows rather
than on single nucleotides to save computation time with-
out sacrificing accuracy (Cohen et al. 2005). In addition, we
also note that using large window sizes (1 kb or longer)
biases the segmentation, whereas using the small window
size minimizes the segmentation bias (Dagan T, personal
communication). The GC content for each window was
calculated. All segmentation algorithms were applied on
the resulting sequences of GC frequencies.

Algorithms
We tested seven segmentation algorithms from the litera-
ture. Below, we describe only the main ideas behind each
algorithm. In most cases, the details and the implementa-
tion are presented in the original papers. We could not ob-
tain the original code for one of the programs and
reconstructed the program to the best of our ability on
the basis of its description. For several algorithms, it is un-
clear which parameters were to be used under which cir-
cumstances. In such cases, we used the default parameters
recommended by the authors. Unless obtained from the
authors, algorithms were implemented in Matlab 7.5. These
scripts are freely available from our Web site http://nsm
.uh.edu/;dgraur/eran/simulation/main.htm.

DJS. In this method (Cohen et al. 2005), sequences are re-
cursively partitioned by maximizing the difference in GC
content between adjacent subsequences, as measured by

FIG. 2. Spatial distributions of GC content in 32-bp nonoverlapping
windows for three simulated genomic sequences of size 100 kb. The
sequences differ in their between-domain variability: (a) rsequence 5
0, (b) rsequence 5 2.5, and (c) rsequence 5 10. Sequences contain ten
equally sized homogeneous domains (vertical dotted lines). The
mean GC content of each domain is shown above the horizontal
red lines.
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the Jensen–Shannon divergence statistic (DJS) (Lin 1991).
The DJS statistic is calculated over all possible partitioning
points, and the sequence is partitioned at the position of
maximum DJS. The process of segmentation is terminated
when the maximal DJS value is smaller than a predeter-
mined threshold (for full description, see Supplementary
Material). We used a threshold of 5.8 � 10�5 (Dagan T,
personal communication).

DJS BIC. In this method (Li 2001a; Li et al. 2002), sequences
are recursively partitioned by maximizing the difference in
GC content between adjacent subsequences measured by
the Jensen–Shannon divergence statistic (DJS) (Lin 1991).
The ‘‘segmentation strength’’ s is a predefined measure
of stringency for the segmentation that considers the
sequence length and the maximum DJS value (for full de-
scription, see Supplementary Material). The process of
segmentation continues as long as s is larger than a prede-
termined threshold s0. We used s0 5 0.

H&M. In Haiminen and Mannila’s (2007) method, the se-
quence is partitioned into 100-kb nonoverlapping windows
and their GC content is calculated. The algorithm divides
the sequence into a predetermined number of domains (k)
so that the sum of squares of the Euclidean distance be-
tween the GC content of the segments and the sequence
GC content is minimized. A serious disadvantage of this
algorithm is its quadratic computation time, which pre-
cluded the testing of its performance on long sequences
(�100 kb). In addition, determining a realistic value for
k, as far as real-life sequences are concerned, is not
a straightforward task; however, in our simulation sets, it
was simply the number of predetermined domains. We
used the segmentation code provided by the authors at
http://dx.doi.org/10.1016/j.gene.2007.01.028.

Sarment. This package implements an algorithm that par-
titions the sequence into k domains using maximal predic-
tive partitioning (Guéguen 2005). As in the previous case,
the final number of domains (k) has to be determined
a priori. Again, in real-life situations, the value of k is un-
known; however, in our simulation, the value of k is known.
We used the segmentation code (version 4) provided by
the authors at http://pbil.univ-lyon1.fr/software/sarment/
(file tar.gz).

Costantini et al.We used the sliding window algorithm as
described by Costantini et al. (2006). In this method, the
sequence is partitioned into 100-kb nonoverlapping win-
dows. The GC variation within every window is calculated
by the GC content SD. The windows are scanned for differ-
ences in the SD between every two adjacent windows. Ad-
jacent windows with differences between their SD below
a given threshold of 1% were considered concatenated do-
mains (Costantini et al. 2006). We did not observe any cases
that would justify using smaller thresholds.

Compositional Heterogeneity Index. This method
(Nekrutenko and Li 2000) uses a divide-and-conquer ap-
proach (see Cormen et al. 1990). The sequence is parti-
tioned to n windows of length l, and the compositional

heterogeneity index (CHI) measure is calculated for each
window. Sequences are then recursively partitioned by
maximizing the difference in GC content between adjacent
subsequences, measured by the CHI measure

CHI5

1
n� 1

Pn
i5 2

jGCi � GCi� 1j
ffiffiffiffiffiffiffiffiffiffiffiffi
Pð1� PÞ

L

q ; ð3Þ

where the GC content of each nucleotide in the window is GCi
and the mean GC content of the window is P. The process
of segmentation is terminated when the maximized CHI is
smaller than a given threshold. In order to estimate the halting
threshold parameter, 100,000 random sequences, each 1-Mb
long, were drawn from a uniform distribution. Each of these
sequences was partitioned into two at a random point, and
the CHI value for each segment was calculated. We followed
the procedure of Cohen et al. (2005) and chose a CHI value
corresponding to the upper 5% of the cumulative CHI distri-
bution. We tested a wide range of window sizes (l5 2, 3, 4, 5,
and 10). The algorithm appeared to perform best with win-
dow size of 2.

IsoFinder. We were not successful in obtaining the code
for this program from the corresponding author and recon-
structed the IsoFinder algorithm from the original descrip-
tion in Oliver et al. (2004). (We note that a ‘‘canonical’’
IsoFinder program does not exist. The description of Iso-
Finder was published in 2004, but the Fortran program that
was supposed to be available online was not! The program
was revised and rerevised periodically for about 4 years;
however, the changes were documented neither in the lit-
erature nor online. Currently, a new ‘‘stand-alone’’ IsoFind-
er program is posted online. This program yields results
that are essentially indistinguishable from DJS, with the ex-
ception that short segments are arbitrarily concatenated
into longer domains, thereby artificially increasing the sizes
of the ‘‘isochores.’’ Unfortunately, no detailed description is
available for this ‘‘new improved’’ IsoFinder, except for
a short unreviewed note in arxiv [http://arxiv.org/abs/
0806.1292]. For all intents and purposes, the 2004 IsoFinder
no longer exists. Under these circumstances, the best we
could do is to reconstruct the algorithm based on the de-
scriptions in the original paper. We compared our code
with that of IsoFinder [as of January 2007] and found that
our version of the algorithm detected nearly all the borders
detected by this IsoFinder but also other borders not re-
ported by IsoFinder. Because we wanted to include this al-
gorithm in our study, while at the same time, we were
reluctant to keep up with a ‘‘moving target,’’ we chose
to use our own code. It is available at http://nsm.uh
.edu/;dgraur/eran/simulation/main.htm.)

Our IsoFinder algorithm uses a sliding pointer that
moves from left (5#) to right (3#) of the sequence. At each
point, the mean GC contents to the left and the right of the
pointer are compared using the t-statistic. At the maxi-
mum t-statistic point (tfilt), the algorithm compares the
two subsequences to the left and to the right of the point
as follows: both subsequences are divided into windows of
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size l0 and their window GC contents are compared using
Student’s t-test to obtain tfilt. The distribution of tfilt values,
P(s 5 tfilt), was obtained using Monte Carlo simulations
(Bernaola-Galván et al. 2001). The statistical significance,
P(s), of the possible partitioning point with tfilt 5 s is de-
fined as the probability of obtaining the value s or lower
values within a random sequence. If P(s) exceeds a prede-
termined threshold P0, the sequence is partitioned into two
subsequences and the procedure is repeated recursively.
We followed Oliver et al. (2004) and used l0 5 3,000 bp
and P0 5 95%.

Comparing Different Segmentational Results with
Real Genomic Data
We used the seven segmentation algorithms to partition
a 10-Mb fragment of the human chromosome 1, starting
with position 1. It was sufficient to partition one chromo-
some to reveal the differences between the different
algorithms. For the Sarment and H&M algorithms, the
maximum k value for which results were obtained was
k 5 10. All other algorithms were used with default
parameters.

We analyzed the results in two ways: First, for every al-
gorithm, we calculated the proportion of domain borders
that were similar to those inferred by other algorithms.
Two borders inferred by different algorithms were consid-
ered similar if the distance between their chromosomal lo-
cations was smaller than 5 kb. Next, for every algorithm, we
calculated the proportion of homogeneous domains. In ac-
cordance with the homogeneity test (see Homogeneity
Test), we analyzed only domains larger than 10 kb.

Data Analysis
There are two possible ways to assess true/false positives/
negatives. One can consider either the borders of the do-
mains or the domains themselves. Because the algorithms
determine partition points, it seems natural to use the bor-
ders as the variable. However, defining borders as true/false
positive/negative would force us to reward partial domain
detection, which is not really meaningful. For example, con-
sider a sequence of ten equally sized domains with nine
internal borders and an algorithm that detects every other
border (two, four, six, and eight). The algorithm sensitivity
would be 0 in our method because it did not detect any
homogeneous domain. In fact, the algorithm only detected
heterogeneous domains—the opposite of what we are
looking for. By using borders, the algorithm sensitivity
would have been nearly 50%, that is, the algorithm would
wrongly not be considered a complete failure.

A true positive (TP) border is a border that was identi-
fied at a maximum distance of 5 kb or 5% of its domain size
from a predetermined border, whichever is smaller. A do-
main that has both its borders as TP inferences is consid-
ered a correctly inferred domain (fig. 3a). To evaluate the
segmentation results, we used two statistics: sensitivity and
precision rate (fig. 3b). Sensitivity is the proportion of cor-
rectly inferred domains out of all predetermined domains.
The precision rate statistic quantifies the probability of the

positive prediction of the algorithm, that is, the proportion
of correctly inferred domains out of all domains reported
by the algorithm. To test whether the differences between
the algorithms are significant, we use the one-tailed Wil-
coxon rank-sum test with P , 0.05 (Sokal and Rohlf
1995, p. 427–431) and the Bonferroni correction for mul-
tiple tests (Sokal and Rohlf 1995, p. 240, 702–703).

In figure 3a, we illustrate partitioning of a 100-kb
simulated genomic sequence composed of ten equally
sized homogeneous domains. The contingency table in
figure 3b further elaborates the terminology used in the
analyses. In this particular example, the difference between
the mean GC content of the first two domains was below
1%; therefore, they are treated as a single domain. Thus,
only nine domains and eight internal borders are consid-
ered. Consider a hypothetical algorithm applied to the
above sample sequence. Suppose this algorithm identified

FIG. 3. (a) The spatial distribution of GC content for a simulated
genomic sequence originally made of ten homogeneous domains,
each 10 kb in length (vertical bars). The first two domains have been
concatenated because, by chance, the difference in their mean GC
content was lower than the cutoff value. Correct inferences (circles)
and incorrect inferences (squares) are marked. Here, six out of nine
domains were detected accurately. (b) The contingency table used
to calculate sensitivity and precision rate. For the example in (a), the
table values are TP5 6, FP5 3, and FN5 3. The sensitivity and the
precision rate are 66%.
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eight partitioning points, that is, borders within the se-
quence borders, dividing the sequence into nine domains.
Compared with the built-in domains, the first three were
not detected (false negative, FN 5 3) and the last six were
detected accurately (TP 5 6). In addition, three domains
were detected erroneously because at least one of their
borders was not in the proximity (,5 kb) of any other pre-
determined border (false positive, FP5 3). In cases in which
the domains were longer, true negative (TN) became much
larger effectively dwarfing TP, FN, and FP. Thus, we did not
use TN nor compute any statistic, for example, specificity,
which used TN. For our hypothetical example, the sensitiv-
ity TP/(TP þ FN) and precision rate TP/(TP þ FP) are
therefore calculated to be 66%.

For the first simulation set of genomic sequences, we
analyzed the algorithm results in two dimensions: in se-
quences with similar between-domain variability and dif-
ferent domain lengths in one dimension and in
sequences with different between-domain variability and
similar domain lengths in the other. We calculated the sen-
sitivity and precision rate statistics for each sequence in
each dimension and plotted the average sensitivity versus
the average precision rate. We chose this presentation form
because it decouples the algorithm performances and the
error costs by depicting the trade-offs between sensitivity
and precision rate. Each graph space distinguishes among
several outcomes. For example, the point (0, 0) represents
absolute failure to detect anything and the point (100, 100)
represents perfect domain detection where all inferred
domains match all predetermined domains.

To evaluate the results for the chromosomal sequences
in the second set, we used three statistics: short domain
sensitivity, long homogeneous domain sensitivity, and
precision rate. Here, the two sensitivity statistics quantify
how well the algorithm identifies short and long homoge-
neous domain borders. The maximum distance between
a predetermined border of a short domain and a correctly
inferred short domain border was conservatively set to
96 bp.

Homogeneity Test
To compare the within-domain relative homogeneity of
a domain with that of the sequence on which it resides,
we applied the F-test to the variance in GC content of
the two (Zar 1999). We followed the procedure proposed
by Cohen et al. (2005) and divided every inferred domain
into 2,048-bp nonoverlapping windows. The choice of win-
dow size was supposed to ensure robust results with short
domains of length 10 kb and above. The GC content for
each window was calculated for the inferred domain in
question and for the entire sequence within which the
domain resides. Because the F-test assumes the data are
normally distributed, we applied the arcsine-root transfor-
mation to the GC content values of the windows within
each domain (and sequence) before calculating the vari-
ance (Sokal and Rohlf 1995). Finally, we applied the false
discovery rate correction (Benjamini and Hochberg
1995) for multiple comparisons.

A one-tailed F-test with a null hypothesis
H0: r2segment � r2sequence and an alternative hypothesis
H1: r2segment,r2sequence was applied with n1 – 1 and n2 – 1
degrees of freedom, where n1 and n2 are the numbers of
windows in the domain and in the corresponding sequence,
respectively. If the variance over a domain was found to be
significantly smaller (P, 0.01) than that of the correspond-
ing sequence, then the domain was considered more homo-
geneous than the sequence.

Computation Time
We calculated the algorithm mean computation times for
sequences of low between-domain variability (5) and three
sizes: 100 kb, 1 Mb, and 10 Mb.

Results

Comparison of Segmentation Results Obtained by
Different Algorithms
We partitioned a 10-Mb fragment of human chromosome
1 to illustrate the difference in the inferred domains found
by the different algorithms (fig. 1). First, for every algorithm,
we measured the proportion of inferred domains that were
similar to those inferred by other algorithms (table 1), that
is, the extent to which the results of various algorithms
agree. The DJS and DJS BIC algorithms produced the most
similar results (84%), followed by the Sarment and H&M
algorithms (60%). The similarity between the results of
all other algorithms was low (,50%).

The number of homogeneous domains (.10 kb) in-
ferred by the different algorithms varied greatly (0–192),
although their relative proportion out of all inferred do-
mains was mostly high (table 2). However, we note that
for sufficiently long domains (.50 kb), the homogeneity
test loses significance (Cohen et al. 2005). Therefore, seg-
mentation algorithms that infer only a few long domains
may be erroneously considered precise.

Comparison of Algorithm Performances on the
First Simulated Data Set with Fixed-Sized
Homogeneous Domains
To gauge domain relative homogeneity in our simulated
data set, we compared the variance in GC content within
each domain with that of the sequence on which it resides.
As expected, sequences generated with between-domain

Table 1. Percentage of Inferred Domain Borders That Are in Close
Proximity (�5 kb) to Borders Found by Other Segmentation
Algorithms (see text).

Algorithms DJS

DJS

BIC H&M Sarment
Costantini

et al. CHI IsoFinder

DJS — 84 2 3 13 0 35
DJS BIC — 3 3 13 0 35
H&M — 56 1 0 3
Sarment — 0 0 3
Costantini et al. — 0 11
CHI — 0
IsoFinder —
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variability of 0 had almost no homogeneous domains,
which made them nearly indistinguishable. Only 12–38%
of the domains of lengths 10 kb were found to be homo-
geneous (see Homogeneity Test). In other words, segmen-
tation algorithms were not expected to detect more than
40% domains in the shortest sequences. The domains in all
other sequences were homogeneous, and segmentation al-
gorithms were expected to detect them.

Figure 4a shows the mean sensitivity versus precision
rate statistics for algorithms applied to sequences of the
first simulation set with similar between-domain variability
and different domain lengths. To simplify the presentation,
we show only three algorithms with distinct results: DJS BIC,
Costantini et al., and IsoFinder (for full results, see supple-
mentary figs. S1 and S2). On average, the DJS and DJS BIC
algorithms had the highest sensitivity (70–95%) and preci-
sion rate (80–87%, shown in supplementary figs. S1 and S2).
The results of these two algorithms were nearly identical for
all between-domain variability values and significantly bet-
ter than those of other algorithms (Wilcoxon rank-sum, P
, 0.05). The sensitivity of the IsoFinder algorithm increased
(27–37%) for higher between-domain variability values;
however, its precision rate decreased (38–22%). That is,
the algorithm inferences improve with the distinguishabil-
ity of domains; however, the proportion of correctly in-
ferred domains out of all inferred domains decreases.
The Costantini et al. algorithm had an average sensitivity
and precision rate of 57% and 37%, respectively. Its per-
formances were mostly unaffected by the change in the
between-domain variability. The sensitivity and precision
rate of Sarment and CHI algorithms were the lowest among
all algorithms and were unaffected by the change in be-
tween-domain variability.

Figure 4b shows the mean sensitivity versus precision
rate statistics for DJS BIC, Costantini et al., and IsoFinder
applied to sequences of the first simulation set with differ-
ent between-domain variability and similar domain lengths
(for full results, see supplementary figs. S3 and S4). As be-
fore, DJS and DJS BIC performed significantly better than all
other algorithms with sensitivity values exceeding 95%,
with the exception of 100-kb domains (Wilcoxon rank-
sum, P , 0.05) (supplementary figs. S3 and S4). The Cos-
tantini et al. algorithm outperformed all other algorithms
only in detecting predetermined domains of size 100 kb. Its
performances are otherwise characterized by low precision

rates (0–40%) for nearly all other domain lengths (,50 kb
and .100 kb). In other words, less than 40% of the algo-
rithm inferences were correct for sequences consisting of
homogeneous domains of various lengths. IsoFinder sensi-
tivity increased almost linearly with the increase in domain
sizes (5–52%); however, its precision rate decreased from
47% (10 kb) to 15% (10 Mb). The H&M algorithm had
the largest variability in its results, which suggests
that the algorithm may be too sensitive to variation in
nucleotide composition.

Comparison of Algorithm Performances on the
Second Simulated Data Set with Simulated
Chromosomal Sequences
In our first simulation set, we considered genomic sequen-
ces consisting of ten fixed-sized homogeneous domains.
We now test the algorithms on the second simulation
set, which is a more realistic data set of chromosomal se-
quences consisting of varying domain lengths. An example
of a simulated chromosomal sequence is shown in figure 5.

Table 2. Partitioning Results for a 10-Mb Fragment of Human
Chromosome 1.

Algorithms
Inferred
Domains

Homogeneous Domains
(percentage out of inferred domains)

DJS 216 192 (89)
DJS BIC 189 168 (89)
H&M 10 10 (100)
Sarment 10 10 (100)
Costantini et al. 98 81 (83)
CHI 1 0 (0)
IsoFinder 102 79 (78)

FIG. 4. Mean sensitivity versus precision rate for three algorithms:
DJS BIC (squares), Costantini et al. (triangles), and IsoFinder (circles)
applied to sequences of the first simulation set. Results are
presented for sequences consisting of (a) similar between-domain
variability and different domain lengths and (b) different between-
domain variability and similar domain lengths.
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The figure presents a 1-Mb-long chromosomal sequence
with 139 short domains (1 kb) and 6 long homogeneous
domains (.10 kb). The short domains are clumped to-
gether because of their large number (;4,000) compared
with the long homogeneous domains (supplementary
table S1).

In table 3, we summarized the three statistics obtained
for each algorithm: short domain sensitivity, long homoge-
neous domain sensitivity, and precision rate. In agreement
with our previous results, the DJS and DJS BIC algorithms
significantly outperformed all other algorithms, although
the differences between the two remained statistically in-
significant (Wilcoxon rank-sum, P , 0.05). The Costantini
et al., IsoFinder, and Sarment algorithms could not detect
any domain border accurately, and nearly all their inferen-
ces were in error. The H&M and CHI algorithms were ex-
cluded from this analysis due to their large computation
time requirement.

When tested for homogeneity, approximately 77% of the
long domains drawn from a power-law distribution were
found to be homogeneous. Although the test could not
be applied to the short domains because of their size, they

were distinguishable from one another because of their GC
content.

Computation Times
Using sequences from the first simulation set, we estimated
the algorithm computation times on sequences of varied
lengths and between-domain variability value of 5. The re-
sults show that the fastest algorithms are Costantini et al.
and Sarment, followed closely by DJS and DJS BIC (table 4).
IsoFinder, CHI, and H&M algorithms required the largest
computation time. It was impossible to estimate the com-
putation time of H&M algorithm on the complete data set
because of the long computation time; however, partition-
ing a 10-Mb fragment of human chromosome 1 took ap-
proximately 26 h.

Discussion
We used a series of benchmark sequences to evaluate
which of the sequence segmentation algorithms can detect
predetermined domain borders between compositionally
homogeneous domains. The results show that the DJS

and DJS BIC significantly outperformed all other algorithms.
A serious disadvantage of the H&L and Sarment algorithms
was the need to predetermine the number of domains to
be found. Often, the choice of a predetermination criterion
is based on the number of domains that the authors favor
(e.g., Haiminen and Mannila 2007). Predetermining the re-
sults is subjective and reduces the role of the segmentation
algorithm to positioning the domain borders. A different
form of domain predetermination is exercised in the Cos-
tantini et al. algorithm that best detected domains that
matched its sliding window size.

In the simulations, we attempted to capture some of the
statistical features of the genome that characterize its com-
positional homogeneity. Although we did not capture the
whole compositional complexity of the genome, we believe
that the framework established here is an important step in
addressing the isochore question. Generating sequences
with predetermined homogeneous domains gave us an ad-
vantage that cannot be gained by using real genomic data.
These simulated data allowed us to study the sensitivity,
precision rate, and computation time of each algorithm.

FIG. 5. The spatial distribution of GC content of 32-bp non-
overlapping windows along a fragment of 1 Mb in length from
a simulated chromosomal sequence. The green lines represent the
domain borders. The mean GC content and the GC content SDs of
the domains are marked with red and black horizontal lines,
respectively. The number of short domains is noted for each cluster.

Table 3. Relative Performances of Seven Segmentation
Algorithms.

Algorithms
Short Domain
Sensitivity (%)

Long Homogeneous
Domain Sensitivity

(%)

Precision
Rate
(%)

DJS 96 87 98
DJS BIC 95 66 98
H&Ma — — —
Sarment 0 2 3
Costantini et al. 0 ;0 ;0
CHIa — — —
IsoFinder 0 5 3

a The algorithm’s large computation time prevented us from testing it.

Table 4. Computation Times (in hours) for Different Segmentation
Algorithms as a Function of the Sequence Length. Results
Obtained from the Algorithm Mean Computation Times for
Sequences of Low Between-Domain Variability (5) and Three Sizes:
100 kb, 1 Mb, and 10 Mb.

Algorithm 100 kb 1 Mb 10 Mb

DJS 0.01 0.07 0.67
DJS BIC 0.01 0.07 0.67
H&M 16.67 —a —a

Sarment 0.01 0.06 0.44
Costantini et al. <0.01 0.01 0.05
CHI 0.09 10.33 66.67
IsoFinder 0.01 0.66 10

a The extremely long computation time required for this algorithm prevented us
from testing it.
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Our intent was not to demonstrate that one algorithm
finds more isochores than another but rather to emphasize
the importance of using a reliable method to study iso-
chores and to demonstrate the differences of distinct
method results.

It is important to note that every algorithm requires at
least one fixed parameter as input. Using different param-
eter values often alters the segmentation results signifi-
cantly. Because it is impossible to consider all parameter
values for all algorithms, we used the parameter values rec-
ommended by the authors. It is therefore possible that,
with different parameters, some algorithms will perform
better than presented. In practice, however, one set of pa-
rameters would not maximize the algorithm performances
for all sequence. For example, DJS-based algorithms, which
performed relatively well, failed to infer many domains with
low between-domain variability or short domains because
of the particular choice of the thresholds. Had the thresh-
old been lower, the DJS algorithm would have improved its
performances with low between-domain variability and
short domains, but its precision rate with long domains
or domains with high between-domain variability would
have declined sharply (results not shown). Deciding which
parameters to use is a common difficulty to all algorithms
and can only be resolved by a parameter-free algorithm.
Such an algorithm is currently under development. In
the meantime, we recommend using DJS with its default
parameters.

Our simulated domains have clear boundaries, and it
is possible (but not probable) that with less clearly de-
fined boundaries, other methods will perform better
than those based on the Jensen–Shannon divergence.
Our data clearly indicate that all the algorithms perform
worse when the between-domain variability is reduced,
as would be the case if boundaries were less clearly
defined.

We hope that benchmarks will be useful in testing new
segmentation algorithms and that poorly performing
algorithms will not be used further without modification.
We also hope that our framework is a first step in an
attempt to explore the compositional structures of
genomes.

Supplementary Material
Supplementary table S1 and figures S1–S4 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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